
Software Engineering 2
A practical course in software engineering

Ekkart Kindler

Ekkart KindlerAgenda today

 Agile Development

 More details on project

 Discussion on project (Q&A)

 Getting existing software running
(by Shahrzad M. Pour)

2SE2 (02162 e20), L02

II. Agile Development

https://learning-oreilly-com.proxy.findit.dtu.dk/library/view/extreme-programming-explained/0201616416/#toc

Ekkart Kindler

 In Lecture 1 already:
A quick overview of some agile practices.

 Today:
 Conceptual background
 More details

4SE2 (02162 e20), L02

Ekkart Kindler1. Motivation

Conceive
Design
Implement
Operate

5SE2 (02162 e20), L02

How

Why
What

Ekkart KindlerCo-evolution

HOWWHAT

6SE2 (02162 e20), L02

“What” should
the software
do?

“How” is it
realized?

Ekkart Kindler

7SE2 (02162 e20), L02

Driving a car

One cannot steer a
standing car !

Ekkart KindlerGall’s law

“A complex system that works is invariably found to
have evolved from a simple system that worked. A
complex system designed from scratch never works
and cannot be patched up to make it work. You have
to start over with a working simple system.”

John Gall: Systemantics: An essay on how systems
work, and especially how they fail. General
Systemantics Press, Ann Arbor, Michigan, 1975.

8SE2 (02162 e20), L02

Ekkart KindlerMain message

Experience shows (for complex systems):
 CDIO does not work purely sequentially
 Once we have implemented a system (how),

we get a (much) better understanding of
what the system should do!

 Software development and management is very
much about managing risk

 Development process needs adjustments
while we are going

 Agile Software Development
9SE2 (02162 e20), L02

Ekkart KindlerAgile manifesto

„We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have
come to value:
 Individuals and interactions over processes and

tools
 Working software over comprehensive

documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan
That is, while there is value in the items on the right, we value
the items on the left more.“
Kent Beck et al. 2001

10SE2 (02162 e20), L02

Ekkart Kindler

11SE2 (02162 e20), L02

Waterfall Model

Planning
phase

Definition
phase

Design
phase

Implem.
phase

Acceptance
phase

Mainten.
phase

The “terms on the right” very
much reflect the traditional
“waterfall model”. We will
come back to that later.

Ekkart Kindler2. Background

 Four variables of software development
 Cost of change

Agile development
 Values
 Principles
 Basic activities

12SE2 (02162 e20), L02

Ekkart KindlerVariables

Four variables of software development process
 Cost
 Time
 Quality
 Scope

13SE2 (02162 e20), L02

Ekkart KindlerNote

 There is no way the customer could pick all four
variables

 Even three variable are not fully independent (e.g.
more developers do not necessarily speed up the
process, definitely and not in a linear way)

 Agile helps adjusting these variables dynamically
(and get the most value for the customer):
 Short iterations
 More practise in estimating user stories (developers)
 Prioritization of user user stories (customer)

14SE2 (02162 e20), L02

Ekkart KindlerCost of change

15SE2 (02162 e20), L02

Cost

Ekkart KindlerCost of change

16SE2 (02162 e20), L02

Cost

Time

Ekkart KindlerAgile Values

 Communication

 Simplicity

 Feedback

 Courage

17SE2 (02162 e20), L02

HOWWHAT

Ekkart KindlerBTW: Complex vs Complicated

 Complexity

 Complicatedness

18SE2 (02162 e20), L02

Ekkart KindlerBTW: Complex vs Complicated

 Complexity is inherent to the problem
solved

 ”Complicatedness is difficulty that serves
no purpose ...”
http://picture-poems.com/week4/complexity.html

19SE2 (02162 e20), L02

Ekkart KindlerAgile Principles

 Values give some orientation and criteria for a
successful agile development

 But, values are too vague for defining concrete
practices

 Therefore, agile builds on principles

20SE2 (02162 e20), L02

Ekkart KindlerFundamental Principels

 Rapid feedback

 Assume Simplicity

 Incremental change

 Embracing change

 Quality work

21SE2 (02162 e20), L02

Assume that the problem
can be solved in a simple
way.

Ekkart KindlerOther Principles

 Teach learning
 Small initial investment
 Play to win
 Concrete experiments
 Open, honest communication
 Work with peoples’ instincts, not against them
 Accepted responsibilities
 Local adaptation
 Travel light
 Honest measurements

22SE2 (02162 e20), L02

As opposed to “play not to
loose”

Ekkart KindlerActivities

 Coding
 Testing
 Listening
 Designing

23SE2 (02162 e20), L02

Ekkart Kindler3. Agile Practices (overview)

 On-site customer (Ekkart and, sometimes,
Shahrzad)

 Small/short releases 2-3 week
 Planning game

24SE2 (02162 e20), L02

Ekkart KindlerAgile Practices

 Coding standards
 Testing

 Continuous integration

25SE2 (02162 e20), L02

Test driven development:
start with programming the
test; automated test (unit
tests)

Don’t forget to define your
coding standards (most
IDEs have predefined
some; and most
programming languages
have their own standards)

Ekkart KindlerAgile Practices

 Pair programming
 Simple design
 Refactoring

26SE2 (02162 e20), L02

Ekkart KindlerMissing last time

 Metaphors:
Simple story (and terminology) how the system
should work; speak simple pictures

 Collective ownership:
Anyone can change, anyone has obligation to
change (if value increases)

 40-hour week (currently in Denmark 37.5 hour week)

27SE2 (02162 e20), L02

Ekkart KindlerSynergy of Practices

 The different practices support each other
 One practice’s weakness is the others strength
 You cannot pick/chose practices arbitrarily

28SE2 (02162 e20), L02

Ekkart KindlerExample

Short Releases would be impractical, unless
 Planning Game helps identifying the user stories

with most value
 Continuous Integration allows deploying it with

minimal effort
 Testing would guarantee low (or desired) defect

rate
 Simple Design allows you what is needed now

29SE2 (02162 e20), L02

Ekkart Kindler4. Details

 Planning Game
 Pair Programming
 Testing

 Organizing facilities

30SE2 (02162 e20), L02

Ekkart KindlerPlanning Game

 Project owner:
Formulates user stories

 Developers:
Estimate stories (how long do they take to implement)

 Developer: If a story is too big, story is split up in
sub-stories and tasks

 Project owner prioritizes and chooses stories for
next release (choose scope), but not more than
developers estimated they can do!

 During iteration: Developers, assign and implement
stories and adjust (if needed together with project
owner)

31SE2 (02162 e20), L02

Ekkart KindlerUser Stories: Examples

Example from last years’ projects
 As a home owner, I want to be able to use NorthQ devices with

openHAB, so that I can use NorthQ devices together with other devices
available in openHAB

 As an inhabitant of some home, I want the openHAB system to be aware
of my location (even outside the home) so that the system can take
actions based on this information (which, for example, could be turning on
the heating in my room when I am on my way home from work).

 As a home owner, I want openHAB to collect data from sensors and
record events, which later can be visualized and analyzed for "some"
purpose so that I can optimize my home (e.g. w.r.t energy consumption,
well-being, ...).

 As a home owner, I want that the openHAB system and the involved
NorthQ system cannot be "hacked" (in particular not through exploiting
the extensions), so that I can trust the system.

 ...

32SE2 (02162 e20), L02

Ekkart KindlerUser Story: Structure

As a …,
 Who is involved in the user story: user in a role

I want to do …
 What does the user do in the story

so that …
 Why is that user story relevant

33SE2 (02162 e20), L02

Ekkart KindlerPair programming

is NOT
 one person programming, another only watching
 one person typing
 a tutoring session for the other person
 always pairing up with the same person
 programming with the buddy you best get along with

34SE2 (02162 e20), L02

Ekkart KindlerPair programming

is
 communication and interaction
 getting a second opinion
 critically reviewing the other’s work
 correctness
 simplicity
 avoid tunnel view

 learning from each other
 dynamic

35SE2 (02162 e20), L02

If you are not an expert,
ask one to join you for
the task at hand

Ekkart KindlerTesting

Two sources of tests:
 Programmers:

Unit tests for everything which potentially or likely
could be wrong (or which went wrong at a some
time)

 Customers (maybe implemented by programmer):
Functional tests for user stories

36SE2 (02162 e20), L02

Tip: For testing complex
user stories with hardware,
it might be worthwhile to
realize an emulator for
hardware devices!

Ekkart KindlerOrganizing Facilities

 Group work and group / meeting:
 Arrangement of tables
 Use projectors and blackboards

(focus discussion)
 Make status of current user stories and tasks visible
 Show metrics (tests, completion status)

 Be clear about: Are you having a group discussion
or are you working individually (in pairs)

 Make sure everybody knows what their tasks are
until the next meeting

37SE2 (02162 e20), L02

	Software Engineering 2�A practical course in software engineering
	Agenda today
	II. Agile Development
	Dias nummer 4
	1. Motivation
	Co-evolution
	Driving a car
	Gall’s law
	Main message
	Agile manifesto
	Waterfall Model
	2. Background
	Variables
	Note
	Cost of change
	Cost of change
	Agile Values
	BTW: Complex vs Complicated
	BTW: Complex vs Complicated
	Agile Principles
	Fundamental Principels
	Other Principles
	Activities
	3. Agile Practices (overview)
	Agile Practices
	Agile Practices
	Missing last time
	Synergy of Practices
	Example
	4. Details
	Planning Game
	User Stories: Examples
	User Story: Structure
	Pair programming
	Pair programming
	Testing
	Organizing Facilities

