
Software Engineering 2
A practical course in software engineering

Ekkart Kindler

I. Introduction

Ekkart KindlerIntroduction

 Motivation: Software engineering & management
 Agile development
 The role of models in software engineering

 Organisation of this course

 Project (and tutorials)
 The task
 Organisation
 Forming the groups

3SE2 (02162 e20), L01

Ekkart Kindler

4SE2 (02162 e20), L01

Weekly Schedule (roughly)

Mon Tue Wed Thu Fri

8-10 lecture

10-12 project

13-15 tutorial

15-17 project

lecture tutorial project

Ekkart Kindler1. Motivation

 Objectives of this course:
Skills in software engineering!

 What is “software engineering”?
 What is “software”?

 software = program
 software engineering = programming

5SE2 (02162 e20), L01

Ekkart KindlerProgram vs. Software

Software >> Program

Software Engineering >>> Programming

6SE2 (02162 e20), L01

is much more
than

is much much
more than

Ekkart KindlerProgramming vs. SE

7SE2 (02162 e20), L01

Program

Programmer

Programming

Software

Software Engineer

Software Engineering

Ekkart Kindler

8SE2 (02162 e20), L01

Software Engineering is

… much more than programming!

… listening and understanding!
… analytic and conceptual work!
… communication!
… a social process!
… acquiring and using new technologies!
…

… a discipline with proven concepts, methods,
notations, and tools!

… and ever new technologies emerging!
and needs discipline

Ekkart KindlerExperience

Software Engineering requires much experience!

This experience
 can not be taught theoretically!
 will be provided in this course!

 project
 tutorial (new technologies)
 and (only) backed by the lectures

9SE2 (02162 e20), L01

Ekkart KindlerAnalogy revisited

10SE2 (02162 e20), L01

The experience of a big project
cannot be replaced by the
experience of many small
ones.

Effort per participant
• 10 ECTS = ca. 270h work
• ca. 20h/week

Ekkart KindlerObjective

Practice the concepts, methods, notations and tools
for software engineering
 improve programming skills
 understanding of the software engineering process
 agile practices
 experiences with problems and concepts for solving them
 writing and creating documents and models
 use of methods and tools
 practice communication and presentation skills
 capability of teamwork and leadership
 acquire new technologies
 …

11SE2 (02162 e20), L01

Ekkart KindlerExcursion: CDIO

Conceive
Design
Implement
Operate

12SE2 (02162 e20), L01

Ekkart KindlerCo-evolution

HOWWHAT

13SE2 (02162 e20), L01

“What” should
the software
do?

“How” is it
realized?

Ekkart KindlerCo-evolution

HOWWHAT

14SE2 (02162 e20), L01

Ekkart KindlerQuestions

 Why do so many software projects fail?

 Why is software development so hard
(or at least harder as we believe)?

 BTW: What is software?

15SE2 (02162 e20), L01

Ekkart KindlerSoftware

The sum of all programs, procedures and objects
along with the associated data and documentation,
which are necessary (or at least desirable) for
running an application on a computer system.

[free translation of the German Informatik DUDEN
and Hesse‘s definition]

16SE2 (02162 e20), L01

Ekkart KindlerSoftware …

is becoming more and more complex!

Exponential growth of software (in „lines of code“
LOC) within the same product line:
 Apollo (NASA‘s Apollo programme)
 Cars (automotive software)
 …

17SE2 (02162 e20), L01

Ekkart KindlerSoftware …

cannot be „programmed“ by a single person
anymore; a single person cannot fully comprehend
all the details of software any more.

Efforts of 10 to 100 person years (PYs) are quite
standard in software development.

18SE2 (02162 e20), L01

Ekkart KindlerSoftware …

is intangible.

You cannot touch, see or feel
software. Humans lack a
“natural feeling” of software
and its complexity.

19SE2 (02162 e20), L01

Ekkart KindlerSoftware …

does not wear out,
but becomes of age anyway
(in relation to the environment it is running in and the
expectations of the end user)!

Software needs „maintenance“! But, this does not
mean the same as in traditional engineering (e.g. in
mechanical engineering, where systems physically
wear out).

20SE2 (02162 e20), L01

Ekkart KindlerSoftware …

„lives“ longer than its creators expected it to live.

21SE2 (02162 e20), L01

Ekkart KindlerSoftware …

is everywhere and many lifes depend on it.

22SE2 (02162 e20), L01

Ekkart KindlerSoftware Engineering is

… much more than programming!

… listening and understanding!
… analytic and conceptual work!
… communication!
… a social process!
… acquiring new technologies!

23SE2 (02162 e20), L01

Ekkart KindlerProblems
 imprecise requirements
 mistakable and unclear requirements
 inconsistent requirements
 changing requirements

 changing environments (software / hardware)
 different versions and configurations
 changing tools, notations, languages, methods, concepts,

technologies

 collective knowledge only
 communication
 …

24SE2 (02162 e20), L01

Ekkart KindlerSoftware engineering

is the sum of all means, facilities, procedures,
processes, notations, methods, concepts for
developing, operating and maintaining a software
system.

25SE2 (02162 e20), L01

Ekkart KindlerSoftware engineering

Branches:
 Development:

actual development of the software product
 Management:

Manage (control and improve) the development process
 Quality management:

Planning and implementing measures that guarantee that
the software meets the required quality

 Software maintenance:
Remove faults occurring in operation, adapt software to
changing requirements and environments

26SE2 (02162 e20), L01

Ekkart KindlerProcess models

Process models (life cycle models) are the „distilled“
experience of successful software projects.

They define a functional procedure along with
appropriate documents.

 What should be done
 when,
 by whom and
 how!

27SE2 (02162 e20), L01

document, notation
phase
role
method

Ekkart KindlerProcess models

Problem: Often process models are used very
mechanical and in a „meaningless“ way.

 documents just for the sake of the process
 (UML) diagrams just for the sake of UML
 comments just for the sake of comments

28SE2 (02162 e20), L01

Ekkart KindlerRule of thumb

When producing and compiling a document,
ask yourself:
 What should the document be good for?
 Who should be addressed?
 Which information is expected?
 What is the common „pragmatics“?
 …

In short: What is reasonable?

29SE2 (02162 e20), L01

Here, document
can also be code
including
comments.

Ekkart Kindler2. Agile Development

 Since we use agile development from day 1,
we discuss the motivation of agile development and
the used practices already today.

 We will provide some details, the theoretical
underpinning and justification later (next week and
again towards the end of this course)

30SE2 (02162 e20), L01

Ekkart KindlerAgile manifesto

„We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have
come to value:
 Individuals and interactions over processes and

tools
 Working software over comprehensive

documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan
That is, while there is value in the items on the right, we value
the items on the left more.“

Manifesto for Agile Software Development,Kent Beck et al. 2001
31SE2 (02162 e20), L01

Ekkart KindlerAgile Practices

 We will talk about the values, principles, and core
concepts and activities of agile development later in
this course (week 2)

 For now, we discuss the core agile practices used in
this course

32SE2 (02162 e20), L01

Ekkart KindlerAgile Practices

 On-site customer (Ekkart and sometimes staff and
partners from the LiRA project)

 Small/short releases 2-3 week (see schedule)
 Planning game (based on User Stories for next

release)

33SE2 (02162 e20), L01

Ekkart KindlerAgile Practices

 Coding standards
 Testing (automated unit test)
 Continuous integration (use of Git and Jenkins)

34SE2 (02162 e20), L01

Ekkart KindlerAgile Practices

 Pair programming (all code developed and
checked in by two persons)

 Simple design
 Refactoring

35SE2 (02162 e20), L01

Ekkart KindlerStatus reports (SR)

In some tutorial/project sessions on Friday (13-15)
status report by each group (5-10 minutes each)
 can include brief code reviews and
 demos of running software (CI) and
 retrospective:
 what went well
 what did not go well
 what can we do about it
 what’s up next

36SE2 (02162 e20), L01

Ekkart Kindler3. Models in SE

… and a glimpse of how software can
be developed by using models –
without doing any programming at all.

37SE2 (02162 e20), L01

Ekkart KindlerModelling

38SE2 (02162 e20), L01

Ekkart KindlerA Model (Petri net)

39SE2 (02162 e20), L01

semaphor

request1

critical1

idle1

request2

critical2

idle2

Ekkart KindlerStages

 Examples
 Taxonomy (done on blackboard)
 Glossary
 Model (see next slide)

40SE2 (02162 e20), L01

Ekkart KindlerModels and Meta Models

41SE2 (02162 e20), L01

1 target

Model for Petri netsMeta model for Petri nets

Petri net model

PlaceTransition

1 source
Arc

*

PetriNet
context Arc inv:
(self.source.oclIsKindOf(Place) and

self.target.oclIsKindOf(Transition))
or
(self.source.oclIsKindOf(Transition)

and
self.target.oclIsKindOf(Place))

Token
*

Node

Object

Ekkart KindlerDon’t think models as Java

42SE2 (02162 e20), L01

1 target
Petri net model

PlaceTransition

1 source
Arc

*

PetriNet
context Arc inv:
(self.source.oclIsKindOf(Place) and

self.target.oclIsKindOf(Transition))
or
(self.source.oclIsKindOf(Transition)

and
self.target.oclIsKindOf(Place))

Token
*

Node

Object

Ekkart KindlerSyntax (abstract and concrete)

43SE2 (02162 e20), L01

:Place

:Transition

:Arc

:Transition

:Place

:Arc

:Arc

source

target source

target

targetsource

:Arc
sourcetarget

:Petrinet

:Token

graphical /
concrete
syntax

abstract syntax
(as an UML object
diagram)

Ekkart KindlerOverview

44SE2 (02162 e20), L01

:Place

:Transition

:Arc

:Transition

:Place

:Arc

:Arc

source

target source

target

targetsource

:Arc
sourcetarget

:Petrinet

:Token

PlaceTransition

1 source

1 target
Arc

*

PetriNet

Token
*

Node

Object

model

meta model

is an
instance of

build-time

runtime

Ekkart KindlerBenefits of Modelling

 Better understanding
 Communication

 Mapping of instances to XML syntax (XMI)

 Automatic code generation
 API for creating, deleting and modifying model
 Methods for loading and saving models (in XMI)
 Standard mechanisms for keeping track of changes

(observers)
 Simple editor (tree editors)

45SE2 (02162 e20), L01

Ekkart KindlerClass Diagrams are Models too

46SE2 (02162 e20), L01

The term “meta”
model makes
more sense now!

1 source

1 target
AssociationClass

ClassDiagram

Meta model for UML (class
diagrams)

UML model

PlaceTransition

1 source

1 target
Arc

*

PetriNet

Token
*

Node

Object

**

Ekkart KindlerDifferent Meta-levels: MOF

47SE2 (02162 e20), L01

:Place

:Transition

:Arc

:Transition

:Place

:Arc

:Arc

source

target source

target

targetsource

:Arc
sourcetarget

:Petrinet

:Token

PlaceTransition

1 source

1 target
Arc

*

PetriNet

Token
*

Node

Object

1 source

1 target
AssociationClass

ClassDiagram

**

:Class:Class

:Association

:Association

…

…

Ekkart KindlerAnswers:

 Program an editor

 Standard technology for mapping abstract to
concrete syntax: EMF / GMF / EMFT

48SE2 (02162 e20), L01

Ekkart KindlerGeneration Technologies

49SE2 (02162 e20), L01

:Place

:Transition

:Arc

:Transition

:Place

:Arc

:Arc

source

target source

target

targetsource

:Arc
sourcetarget

:Petrinet

:Token

PlaceTransition

1 source

1 target
Arc

*

PetriNet

Token
*

Node

Object

model

meta model

is instance
of

concrete syntax abstract syntax

Place

Transition

Arc

Token

generate an
editor

Ekkart KindlerBenefits of Modelling (cntd.)

 Better Understanding

 Mapping of instances to XML syntax (XMI)

 Automatic Code Generation
 API for creating, deleting and modifying model
 Methods for loading and saving models (in XMI)
 Standard mechanisms for keeping track of changes

(observers)
 Editors and GUIs

50SE2 (02162 e20), L01

Ekkart KindlerDomain model

 The model we have discussed
before has not so much to do
with programming (even though
code could be generated from it)

 It is about making the
concepts of the domain precise:
domain models

 It is about the “what”, not about the “how”
( slide 13) !

 Of course, UML class diagrams are also used for
modelling the ”how”: software models

51SE2 (02162 e20), L01

PlaceTransition

1 source

1 target
Arc

*

PetriNet

Token
*

Node

Object

Ekkart KindlerOther UML diagrams

In this course, we will use many other kind of UML
diagrams, for different purposes
 Use cases
 State machines
 Activity diagrams
 Sequence diagrams
 Component diagrams
 ...

52SE2 (02162 e20), L01

Ekkart KindlerModels and Agile

In agile development models are mostly used for
informal discussions and communication!

Anyway, in order to practice the effective use of
models, you will be required to use models and submit
models in the documentation in this course.

Documentation is required as part of some releases
(and as part of the final submission).

53SE2 (02162 e20), L01

	Software Engineering 2�A practical course in software engineering
	I. Introduction
	Introduction
	Weekly Schedule (roughly)
	1. Motivation
	Program vs. Software
	Programming vs. SE
	Software Engineering is
	Experience
	Analogy revisited
	Objective
	Excursion: CDIO
	Co-evolution
	Co-evolution
	Questions
	Software
	Software …
	Software …
	Software …
	Software …
	Software …
	Software …
	Software Engineering is
	Problems
	Software engineering
	Software engineering
	Process models
	Process models
	Rule of thumb
	2. Agile Development
	Agile manifesto
	Agile Practices
	Agile Practices
	Agile Practices
	Agile Practices
	Status reports (SR)
	3. Models in SE
	Modelling
	A Model (Petri net)
	Stages
	Models and Meta Models
	Don’t think models as Java
	Syntax (abstract and concrete)
	Overview
	Benefits of Modelling
	Class Diagrams are Models too
	Different Meta-levels: MOF
	Answers:
	Generation Technologies
	Benefits of Modelling (cntd.)
	Domain model
	Other UML diagrams
	Models and Agile

