=
—
e

i

Software Engineering 2
A practical course In software engineering

Ekkart Kindler

DTU Informatics
Department of Informatics and Mathematical Modeling

- W

=
—
e

i

Il. Modelling Software

DTU Informatics
Department of Informatics and Mathematical Modeling

A
FOerAx)= Z(i) 5

E bz {z 71 82818284

=
—]
=

I\/I d I I = S ft ‘ DTU Informatics
O e I n g O Ware Department of Informatics and Mathematical Modelling

M

= Model based software engineering

(taking models more seriously than we did
traditionally)

= Reverse engineering

In the last lecture, the focus\
was on the future, -and V\;e
jumped to conclusions (for
motivation purpose_s). Noc\lN,
we fill in some basics an
«traditional” software

' ring. J
SE 2 (02162 el4), LO2 eng\nee S 3

" " DTU Informatics
1 IVI Otlvatl O n Department of Informatics and Mathematical Modelling
]

=
—]
=

M

= What are “software models™?
= What are they good for?
\ " Why do WE need them?

= \What is software?

_ . B
g\ = \What is a model? %ﬁ% %&%w

ﬁ : RARA
V‘/ ERA AR

»
=&
e

SE 2 (02162 e14), L02

M

I\/I d I I ‘ DTU Informatics
O e Department of Informatics and Mathematical Modelling

Modell [lat.-vulgarlat.-it.] das; -s, -e:

7. die vereinfachte Darstellung der Funktion eines
Gegenstands od. des Ablaufs eines
Sachverhalts, die eine Untersuchung od.
Erforschung erleichtert od. erst mdglich macht.

[nach Duden: Das Fremdwadrterbuch, 1990].

SE 2 (02162 e14), L02 5

=
—]
=

I\/I d I ‘ DTU Informatics
O e Department of Informatics and Mathematical Modelling

M

Modell [lat.-vulgarlat.-it.] das; -s, -e:

7. the simplified description of the function,

purpose, or process of something; it enables us
Investigating and analysing this thing.

[nach Duden: Das Fremdwadrterbuch, 1990].

SE 2 (02162 e14), L02

=
—
=

Reminder (cf. LO1)

Department of Informatics and Mathematical Modelling
Ekkart Kindler

M

WHAT HOW

SE 2 (02162 e14), L02

‘ DTU Informatics
Department of Informa

Purpose of Models

M

= pbetter understanding the ,thing" under
Investigation (or development)

= communication
= on the appropriate level of abstraction
= with different kinds of people
= from different angles

= abstraction / composition

= analysis and verification
. consistency, Completeness, correctness,

performance, risks, effort, ... &\
= code generation (cf. LO1) vﬁf’ﬁ

SE 2 (02162 e14), L02 8

Reminder (cf. LO1)

SE 2 (02162 e14), L02

DTU Informatics

Department of Informatics and Mathematical Modelling

:Token

=
—
=

M

ClassDiagram

*

Class

| _J sourc

P
} target

Association

:Class

:Associatipn

'

PetriNet
?
Object
1 1
| _% sourd
Node |2 Arc
<
9 1 targ
Transition Place |‘ Token
:Petrinet
target
1 :Transitior {o = :Arc arﬁ :Place
/ \target sourcl \
— :Arc :Arc
WV source targeWV
t
— :Place {arge :Arc SOU“E :Transitiorf

i N
= o

:Class

:Associatipn

Roles of models in SE |20

Department of Informatics and Mathematical Modellir

=
—
=

M

= traditional®: More or less automatic:

= Forward engineering
= Reverse engineering
= Reengineering
= Model Driven Architecture (MDA)

= Generating (at least part of) the
software from models

- Models ARE the software
(or a part of it)

SE 2 (02162 e14), LO2

10

2.1 Traditional” [R———

M

Initially: Informal sketches of software for

discussion, for better understanding or for
communicating an idea (&

Later: Standardized (graphical) notations (UML)

From these diagrams the program code was
produced (mostly) manually!

E:orward engineering

SE 2 (02162 e14), L02

=
—]
=

Egn 14 D\TU, Infrormati‘cs; - o
”T rad Itl O n a I Department of Informatics and Mathematical Modelling

M

= Since software Is often not well-documented, it

became necessary to retrieve or to extract the
essential idea of the software from its code

Reverse engineering J

= These models are used to better understand
the existing software, and to change the
software based on this understanding

ing = +
Reengineering = l_?everse J
Forward engineering
SE 2 (02162 e14), L02

12

=
—]
=

M

= Some reverse and forward engineering tasks
could be automated (mainly structural parts)

= Changes made in the models obtained by
reverse engineering can (sometimes) be

automatically transferred back into the original
code

anundtrip engineering J
SE 2 (02162 el4), LO2

13

2.2. Reverse engineering

‘ DTU Informatics
Jepartment of Informa

M

Starting point:
= Software cannot be used In isolation
= |t Interacts with other software

* |n most cases, developers must extend

existing software or integrate their software to
existing one

= EXisting software Is often not documented (or
at least not documented well)

SE 2 (02162 el4), L0O2 14

Motivation B

Department of Informatics and Mathematical Modelling

=
—]
=

M

= Before you can (use,) change or extend
software, we need to understand it

SE 2 (02162 e14), L02

15

=
—]
=

D f. .t- ‘ DTU Informatics
e I n I I O n Department of Informatics and Mathematical Modelling

M

= Reverse engineering Is the process that, for
an existing software system, tracks down and
retrieves (“mines”) its underlying ideas and

concepts and documents them in form of
models

= The development process is run in the reverse
direction (reverse engineering)

SE 2 (02162 e14), L02 16

=
—]
=

DTU Informatics
R eSI l t Department of Informatics and Mathematical Modelling

M

= |n the iIdeal case, the result of reverse

engineering would be a specification of the
software system

= Very important: abstraction and focus on the
essentials
~ A

' ' “mine” the
s it possible to'm |
ideas and 10 capture them in

models at all?

N _J

SE 2 (02162 e14), L02 17

Tools

‘ DTU Informatics

M

= Tools can support reverse engineering

= But, they cannot fully relieve an engineer of the
burden of abstraction and focus!

This Is the task of an engineer!

= Moreover, many of today’s too
wrong or incomplete results, w

corrected or amended by hand.

SE 2 (02162 e14), L02

S come up with
nich need to be

18

DTU Informatics

Exal ' l p I e - ‘ Od e Department of Informatics and Mathematical Modelling
|

=
=

M

public interface Moveable { public class Shuttle extends Element implements Moveable {
public void move() ; private boolean driving;
} private Track at;
public abstract class Element { private Simulation simulation;
. public Track getAt() {
} return this.at;
public class Track extends Element { }
private Track next; public void setAt(Track value) {
private Track prev; if ((this.at == null && value '= null) ||
public Track getNext() { (this.at '= null && 'this.at.equals(value))) {
return this.next; this.at = value;
} }
public void setNext (Track value) { }
if (this.next !'= value) { public boolean isDriving() {
if (this.next '= null) { return this.driving;
Track oldValue = this.next; }
this.next = null; public void setDriving(boolean value) {
oldvalue.setPrev (null); this.driving = value;
} }
this.next = value; public Simulation getSimulation() {
if (value '= null) { return this.simulation;
value.setPrev (this); }
} public void setSimulation (Simulation value) {
} if (this.simulation '= value) {
} if (this.simulation !'= null) {
public Track getPrev () { Simulation oldValue = this.simulation;
return this.prev; this.simulation = null;
} oldvValue.removeFromShuttles (this);
public void setPrev(Track value) { }
if (this.prev != value) { this.simulation = value;
if (this.prev != null) { if (value !'= null) {
Track oldvValue = this.prev; value.addToShuttles (this);
this.prev = null; }
oldvValue.setNext (null); }
} }
this.prev = value; public void move() {
if (value '= null) {
value.setNext (this); }

SE 2 (02162 e14), L02

=
—
=

DTU Informatics

Exam I e - ‘ O d e Department of Informatics and Mathematical Modelling
= Ekkart Kindler

M

public class Simulation ({

private TreeSet shuttles = new TreeSet();
public void addToShuttles (Shuttle value) ({
if (value !'= null) {
boolean changed = this.shuttles.add (value);
if (changed) {
value.setSimulation (this);
}
}

}
public Iterator iteratorOfShuttles() {

return this.shuttles.iterator ();
}
public void removeFromShuttles (Shuttle value) ({
if (value '= null) {
boolean changed = this.shuttles.remove
(value) ;
if (changed) {
value.setSimulation (null);
}
}

}
public boolean hasInShuttles (Shuttle value) {

}
public int sizeOfShuttles() {

}
public void removeAllFromShuttles () {

}

SE 2 (02162 e14), L02 20

Example:

/NB: “Getters and
setter methods” fOr

class attributes and

DTU Informatics

=
—]
=

gssociations sh(_)u\d
NOT be shown in
Qhe model.

Simulation

- shuttles : Treeset

+ addToshuttles() : void

+ iteratorfshuttles() ;o terator

+ removeFromshuttles void

+ hasinshuttles() : boolean

+ sizelfshuttles() : int

+ remov eAllFromshuttles @ void

SE 2 (02162 e14), L02

It tOO I Department of Informatics and Mathematical Modelling “Il
=
EEY 3] -], = =res
Moveable Efement
|+ move) : void
Shuttle Track
- driving : boolean - next: Track
-at: Track - prey : Track
- simulation ;. Simulation
— - + getMext() : Track
+ QAN Track + setMext() : void
+ SetAti] : vord + getPrey : Track
+ |5|::-r|*,-'_|n_-;|.;] ; I:-c::-::ul_e.:'m + setPrevii : void
+ setDiriving() © void
+ getsimulationd) : Simulation
+ setsimulation() : wioid
+ Mo e
21

Example: Result (manual)

Simulation

Q.1

R [g] =1y = ol 080N

DTU Informatics

Department of Informatics and Mathematical Modelling

]
—
e

M

Moveable

Element

+ Movel ;- vioid

7
|

I

Shuttle

my=

T,

a.”

sirmlation

SE 2 (02162 e14), LO2

s hultles

+ driving : boolean ——-—=o

Track

Q.1

0.1

+ TV &)

at

Nnext

22

Tools (cntd.) | e B s

M

Much information missing (wrong)
Redundant information

Typically, the models cover the structure only;
behaviour models missing

The results that tools come up with are on a very
low level of abstraction (class diagrams or very
basic design patterns)

-> Still very helpful (and current research improves
the situation)

SE 2 (02162 e14), L02 23

‘ DTU Informatics

In this course

M

= We start from existing project (ePNK)

= Models are part of the software;
(it won't be necessary to retrieve them)

= We don‘t need to reverse engineer the main
structure of the software (domain model)
(but some ideas might be hidden in the
manually written code).

SE 2 (02162 el4), L0O2 24

2.3 Model based SE | B s v

M

Today: We can generate parts of the code form
the UML class diagrams automatically
(MDA, MDE, EMF, EMFT/GMF)

= Class diagrams - Java class stubs with standard
access methods (see RE example)

= Implementation of standard behaviour:
Loading and saving models
Accessing and modifying the models
Editors and graphical user interfaces

= The actual functions is implemented by hand

Future: Actual functions also ,modelled” and
code generated

SE 2 (02162 e14), L02 25

My favourite example

From this (EMF) model for Petri nets:

Generation of (Java) code for

o all classes

e methods for changing the Petri net

e |oading and saving the Petri net as
XML files (= XMI)

SE 2 (02162 e14), L02

DTU Informatics

=
—
=

Department of Informatics and Mathematical Modelling -
>
| |
PetriNet
?
Object
' _4 sourd '
Node |2 Arc
<
9 1 targ
Transition Place |‘— Token
Transition
Place
Arc
Token
26

=
—
=

Model View Controller (MVC) | &

Department of Informatics and Mathematical Modell

M

The domain models are an (the) essential part of
the software

In addition to that we need

= Information about the presentation of the model to
the user

= The coordination with the user

/Note: These parts of the)
software can be modelled too
(don't get confused: ,,medels
are everywhere“); domain

Kmodel vs. software model .
SE 2 (02162 e14), L02 /

Modelle View Controller (MVC) | &

-

View

] 4

=
—
=

M

\

/

PetriNet MOdeI

Token

SE 2 (02162 e14), L02

/

Controller

:Arc

o

N

\

28

MVC

gueries

/

V4

‘ DTU Informatics
Department of Informa

mtes:

v

lew

Representation of model
and user interaction

\ﬂ <
/ \
/ informs on

informs on

changes

. This is a rough idea

only! |
« There are many var|ant§
(e.g. GEF/GMF uses this

user interactions

/Model

Domain model and
functions

~N

~

<€

makes changes

SE 2 (02162 e14), L02

-

.

a bit differently)
ects
\
\
.)
Controller

Makes changes and calls
functions of the model

J

29

MVC

gueries

V4

‘ DTU Informatics

v

lew

Representation of model
and user interaction

/

/ informs on

changes informs on

user interactions

/Model

Domain model and
functions

N

~

\ f Model does not know

anything about its
views or controllers!
. Many different views

possible.
. Changes from other

K parts if the software.

selects

\

~{
(¢ ™

Controller

<€
makes changes

SE 2 (02162 el4), L0O2

Makes changes and calls
functions of the model

\- Y,

30

I\/IVC DTU Informatics
Department of Informatics and Mathematical Modelling

M

MVC is a principle (pattern / architecture)
according to which software should be structured

Eclipse and GEF (as well as GMF) are based on
this principle and guide (force) you in properly
using it

qthings do not work out with EMF
have messed

for you, you might
with the MVC pattern.)

SE 2 (02162 e14), L02 31

EMF, GMF and

)t

DTU Informatics

Department of Informatics and Mathematical Modelling

kkart Kindler

ﬁ
Here: This part can be
generated automatically;

\

see next tutorials.) —?

\

View

=
—
=

M

\

/

-~

PetriNet MOdeI
Object
Ay
: 2 sour 1
Node Arc

lil

E Transition Place |‘— Token

SE 2 (02162 e14), L02

-

Controller

o

AN

~

Y

32

3. Design Patterns (excursion)

DTU Informatics
artment of Informatics and Mathematical Modelling DTU

ﬁOrigina\\y, the term was used\
in architecture: Alexander el

al. 1977. D

Des_ign patterns (in software
engineering) are the distilled experience
of software engineering experts on how
to solve standard problems in software

design.
Freeman & Ereeman call this
“experience reuse’
_J

SE 2 (02162 e14), L02

From the MBSE point of)
view, this 1S only half the
kway!)

33

Excursion Design Patterns |7 "

Often called the “Gang of J
Four” (GoF / Go4).

= Gamma, Helm, Johnson, Vlissides:
Design Patterns. Addison-Wesley 1995.

=
—_
=

i

= Eric Freeman, Elisabeth Freeman:

Head First Design Patterns. O'Reilly
2004.

SE 2 (02162 e14), LO2 34

DTU Informatics

M

Disclaimer

= Design patterns Is a topic of its own

= Worth being taught as a separate course
(e.g. seminar)

= This excursion gives just a glimpse of
the iIdea and some recurring patterns

SE 2 (02162 e14), L02 35

=
=

M

= Name and classification = Participants
= Intent = Collaboration
= Also known as = Consequences
= Motivation * Implementation
= Application = Sample code
= Structure = Known uses
* Related patterns

(o i there is more: A

Some’umes or indications,

variants, coun D

SE 2 (02162 e14), L02

DTU Informatics

=
—
=

Example: SimUIation Algorithm ‘ Department of Informatics and Mathematical Modelling §
<<interface>>
Simulator | Interface
sim() algorithm | sim(Simulation)
Algorithm
Simulation sim(Simulation)
SE 2 (02162 e14), L02 37

=
—]
=

Pattern: Strategy (GoF) |&mm

M

Name and classification

Strategy, object-based, behavioural
Intent

Define a family of algorithms, encapsulate each one,
and make them interchangeable. Strategy lets the

algorithm vary independently from clients that use It
|GOF]

Motivation

Avoid hard-wiring of algorithms for making it easier
to change the algorithm ...

SE 2 (02162 e14), L02 38

Pattern: Strategy (cntd.) |=mm"

Department of Informatics and Mathematical Modelling

=
—
=

M

Structure
Context S Strategy
contextInterface() strategy alginterface()
/\
AlgorithmA AlgorithmB AlgorithmC
algInterface() algInterface() algInterface()

SE 2 (02162 e14), LO2

39

Pattern: Strategy (cntd)

‘ DTU Informatics

Department of Informatics and Mathematical Modelling
Ekkart Kindler

=
—
e

i

—
We skip the rest of the GoF

scheme here.

N

_/

SE 2 (02162 e14), L02

40

M

‘ DTU Informatics
Department of Informa

Questions

= |s the “simulation algorithm” a strategy?

= |s the plugln of simulation algorithms to
the simulation manager a strategy in the

-
CASE Tool" p“ed\

fPatterns should not be ap

i |
too mechanicallyt
But sometimes details make a

difference (€.9- gtate Pattern

Q/s. Strategy) J

SE 2 (02162 e14), L02 41

Pattern: Abstract Facto ry ‘ D EpATMEA 5 itoinaios and MHEtHAvE MadEllng

=
—]
=

M

Name and classification

Abstract factory, object-based, creational
Intent

Provide an interface for creating families of related

or dependent objects without specifying their
concrete classes [GoF]

Motivation

Use of different implementations in different contexts
with easy portabillity ...

SE 2 (02162 e14), L02 42

Department of Informatics and Mathematical Modelling

Pattern: Abstract Factory (cntd) | &

=
—
=

M

\4

AbsFactory

createProdA()
createProdB()

JAY

Client

AbsProdA

N\

/s

ProdAl

ProdA2

Factory1l

Factory2

createProdA()
createProdB()

createProdA()

createProdB()

rThis pattern |
EMF generat

SE 2 (021§ eome VariationS)‘-

s used In the A
ed code (with

\ 4

AbsProdB

A

_J

ProdB1

ProdB2

49

=
—
=

Pattern S”’]gleton (GOF) ‘DTU Informatics

Department of Informatics and Mathematical Modelling

M

Name and classification

Singleton, object-based, creational
Intent

Ensure that a class has only one instance, and

provide a global point of access to it [GoF]
Motivation

g)
See [GoF] of [FF] for details.
k w,

SE 2 (02162 e14), LO2 44

=
—]
=

Pattern: Observer (GOF) |5 e

M

Name and classification
Observer, object-based, creational

" |ntent
Define a one-to-many dependency between objects
so that when one object changes state, all its
dependents are notified and updated automatically
|GoF]

Motivation
Update a view when the model (subject) changes ...

SE 2 (02162 e14), L02 45

Observer (structure)

DTU Informatics

i DTU
Department of Informatics and Mathematical Modelling n
Subject «| Observer
attach(Observer) observers | update()
detach(Observer) A
notify()
\
N notity) { A
forall o:observers
o.update()
; %
Concroub | ConcrObs
state: State <—
Jetstate(subject update() —
setState(State) Gsed in M\/C and 1
EMF/GMF editors
(observers are called
SE 2 (02162 e14), LO2 \ “adaptOrS, there).

—

‘ DTU Informatics

Summary

M

= GoF present 23 patterns

= There are many more (and more complex
combinations of patterns, e.g. MVC)

= “Pattern terminology” can be used to communicate
design!

= Patterns should not be used to schematically
(when used manually)

= Generated code, typically, makes use of many
patterns. Automatic code generation “saves us
making some design decisions” (observer,
sinc?l§ton, factory are part of the EMF-generated
code

SE 2 (02162 e14), L02 47

Exam p I e ‘ DTU Informatics

Department of Informatics and Mathematical Modelling
Ekkart Kindler

=
—
=

M

= Discussion of a simple model in the project session
of today’s course!

SE 2 (02162 e14), LO2 48

