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Modelling Software 

 Model based software engineering 

(taking models a bit more seriously than we did 

traditionally) 

 

 

 Reverse engineering 
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1. Motivation 

 What are “software models”? 

 What are they good for? 

 Why do WE need them? 

 

 What is software? 

 What is a model? 
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Modell 

Modell [lat.-vulgärlat.-it.] das; -s, -e: 

… 

7. die vereinfachte Darstellung der Funktion eines 

Gegenstands od. des Ablaufs eines 

Sachverhalts, die eine Untersuchung od. 

Erforschung erleichtert od. erst möglich macht. 

… 

[nach Duden: Das Fremdwörterbuch, 1990]. 
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Model 

Modell [lat.-vulgärlat.-it.] das; -s, -e: 

… 

7. the simplified description of the function, 
purpose, or process of something; it enables us 
investigating and analysing this thing. 

 

… 

[nach Duden: Das Fremdwörterbuch, 1990]. 
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HOW WHAT 



Ekkart Kindler 

8 SE 2 (02162 e14), L02 

Purpose of Models 

 better understanding the „thing“ under 

investigation (or development) 

 communication 

 on the appropriate level of abstraction 

 with different kinds of people 

 from different angles 

 abstraction / composition 

 analysis and verification 

 consistency, completeness, correctness, 

performance, risks, effort, … 

 code generation (cf. L01) 
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Reminder (cf. L01) 
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Roles of models in SE 

 „traditional“: More or less automatic: 

 Forward engineering 

 Reverse engineering 

 Reengineering 

 Model Driven Architecture (MDA) 

 Generating (at least part of) the 

software from models 

 

 Models ARE the software 

  (or a part of it) 
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2.1 „Traditional“ 

Initially: Informal sketches of software for 

discussion, for better understanding or for 

communicating an idea 

 

Later: Standardized (graphical) notations (UML) 

 

From these diagrams the program code was 

produced (mostly) manually! 
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„Traditional“ 

 Since software is often not well-documented, it 

became necessary to retrieve or to extract the 

essential idea of the software from its code 

 

 

 These models are used to better understand 

the existing software, and to change the 

software based on this understanding 
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Automation 

 Some reverse and forward engineering tasks 

could be automated (mainly structural parts) 

 

 Changes made in the models obtained by 

reverse engineering can (sometimes) be 

automatically transferred back into the original 

code 
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2.2. Reverse engineering 

Starting point: 

 Software cannot be used in isolation 

 It interacts with other software 

 In most cases, developers must extend 
existing software or integrate their software to 
existing one 

 

 Existing software is often not documented (or 
at least not documented well) 
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Motivation 

 

 Before you can (use,) change or extend 

software, we need to understand it 
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Definition 

 Reverse engineering is the process that, for 

an existing software  system, tracks down and 

retrieves (“mines”) its underlying ideas and 

concepts and documents them in form of 

models 

 

 The development process is run in the reverse 

direction (reverse engineering) 
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Result 

 In the ideal case, the result of reverse 

engineering would be a specification of the 

software system 

 

 

 Very important: abstraction and focus on the 

essentials 
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Tools 

 Tools can support reverse engineering 

 

 But, they cannot fully relieve an engineer of the 
burden of abstraction and focus! 
 
This is the task of an engineer! 

 

 Moreover, many of today’s tools come up with 
wrong or incomplete results, which need to be 
corrected or amended by hand. 
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Example: Code 

public interface Moveable { 

   public void move(); 

} 

public abstract class Element { 

  ... 

} 

public class Track extends Element { 

   private Track next; 

   private Track prev; 

   public Track getNext() { 

      return this.next; 

   } 

   public void setNext(Track value) { 

      if (this.next != value) { 

         if (this.next != null) { 

            Track oldValue = this.next; 

            this.next = null; 

            oldValue.setPrev (null); 

         } 

         this.next = value; 

         if (value != null) { 

            value.setPrev (this); 

         } 

      } 

   } 

   public Track getPrev() { 

      return this.prev; 

   } 

   public void setPrev(Track value) { 

      if (this.prev != value) { 

         if (this.prev != null) { 

            Track oldValue = this.prev; 

            this.prev = null; 

            oldValue.setNext (null); 

         } 

         this.prev = value; 

         if (value != null) { 

            value.setNext (this); 

         } 

      } 

   } 

} 

public class Shuttle extends Element implements Moveable { 

   private boolean driving; 

   private Track at; 

   private Simulation simulation; 

   public Track getAt() { 

      return this.at; 

   } 

   public void setAt(Track value) { 

      if ((this.at == null && value != null) ||  

          (this.at != null && !this.at.equals(value))) { 

         this.at = value; 

      } 

   } 

   public boolean isDriving() { 

      return this.driving; 

   } 

   public void setDriving(boolean value) { 

      this.driving = value; 

   } 

   public Simulation getSimulation() { 

      return this.simulation; 

   } 

   public void setSimulation(Simulation value) { 

      if (this.simulation != value) { 

         if (this.simulation != null) { 

            Simulation oldValue = this.simulation; 

            this.simulation = null; 

            oldValue.removeFromShuttles (this); 

         } 

         this.simulation = value; 

         if (value != null) { 

            value.addToShuttles (this); 

         } 

      } 

   } 

   public void move() { 

     ... 

   } 

} 
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Example: Code 

public class Simulation { 

    

   private TreeSet shuttles = new TreeSet(); 

   public void addToShuttles(Shuttle value) { 

      if (value != null) { 

         boolean changed = this.shuttles.add (value); 

         if (changed) { 

            value.setSimulation (this); 

         } 

      } 

   } 

   public Iterator iteratorOfShuttles() { 

      return this.shuttles.iterator (); 

   } 

   public void removeFromShuttles(Shuttle value) { 

      if (value != null) { 

         boolean changed = this.shuttles.remove 
(value); 

         if (changed) { 

            value.setSimulation (null); 

         } 

      } 

   } 

   public boolean hasInShuttles(Shuttle value) { 

... 

   } 

   public int sizeOfShuttles() { 

      ... 

   } 

   public void removeAllFromShuttles() { 

    ... 

   } 

} 
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Example: Result (tool) 
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Example: Result (manual) 
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Tools (cntd.) 

 Much information missing (wrong) 

 Redundant information 

 

 Typically, the models cover the structure only; 

behaviour models missing 

 The results that tools come up with are on a very 

low level of abstraction (class diagrams or very 

basic design patterns) 

 

  Still very helpful (and current research improves 

the situation) 
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In this course 

 We start from existing project (ePNK) 

 

 Models are part of the software; 

(it won‘t be necessary to retrieve them) 

 

 We don‘t need to reverse engineer the main 

structure of the software (domain model) 

(but some ideas might be hidden in the 

manually written code). 
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2.3 Model based SE 

Today: We can generate parts of the code form 

the UML class diagrams automatically 

(MDA, MDE, EMF, EMFT/GMF) 

 Class diagrams  Java class stubs with standard 

access methods (see RE example) 

 Implementation of standard behaviour: 

 Loading and saving models 

 Accessing and modifying the models 

 Editors and graphical user interfaces 

 The actual functions is implemented by hand 

Future: Actual functions also „modelled“ and 

code generated 
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My favourite example 
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• all classes 
• methods for changing the Petri net 
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With this and some more GMF 
information: 
Generation of the Java code of  a 
graphical complete editor (with many 
fancy features). No programming at all. 
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Model View Controller (MVC) 

The domain models are an (the) essential part of 

the software 

 

In addition to that we need 

 Information about the presentation of the model to 

the user 

 The coordination with the user 
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Modelle View Controller (MVC) 

                 Model 

Place Transition 

1 source 

1 target 

Arc 

* 

PetriNet 

Token 
* 

Node 

Object 

View 

Controller 

:Arc 



Ekkart Kindler 

29 SE 2 (02162 e14), L02 

MVC 

  

Model 
 

Domain model and 
functions 
 
 

View 
 

Representation of model 
and user interaction 

Controller 
 
Makes changes and calls 
functions of the model 

queries 

informs on 
changes 

makes changes 

selects 

informs on 
user interactions 



Ekkart Kindler 

30 SE 2 (02162 e14), L02 
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MVC 

MVC is a principle (pattern / architecture) 

according to which software should be structured 

  

Eclipse and GEF (as well as GMF) are based on 

this principle and guide (force) you in properly 

using it 
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EMF, GMF and MVC 
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3. Design Patterns (Excursion) 

 

 Design patterns (in software 

engineering) are the distilled experience 

of software engineering experts on how 

to solve standard problems in software 

design. 
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Excursion Design Patterns 

 

 Gamma, Helm, Johnson, Vlissides: 

Design Patterns. Addison-Wesley 1995. 

 

 Eric Freeman, Elisabeth Freeman: 

Head First Design Patterns. O’Reilly 

2004. 

 … 
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Disclaimer 

 Design patterns is a topic of its own 

 Worth being taught as a separate course 

(e.g. seminar) 

 This excursion gives just a glimpse of 

the idea and some recurring patterns 
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Scheme (GoF) 

 Name and classification 

 Intent 

 Also known as 

 Motivation 

 Application 

 Structure 

 Participants 

 Collaboration 

 Consequences 

 Implementation 

 Sample code 

 Known uses 

 Related patterns 
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Example: Simulation Algorithm 

1 

Simulation 

Simulator 
 sim() 

Interface 
 sim(Simulation) 

Algorithm 
 sim(Simulation) 

1 

<<interface>> 

algorithm 
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Pattern: Strategy (GoF) 

Name and classification 

Strategy, object-based, behavioural 

Intent 

Define a family of algorithms, encapsulate each one, 

and make them interchangeable. Strategy lets the 

algorithm vary independently from clients that use it 

[GoF] 

Motivation  

Avoid hard-wiring of algorithms for making it easier 

to change the algorithm … 
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Pattern: Strategy (cntd.) 

Structure  
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Pattern: Strategy (cntd) 
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Questions 

 Is the “simulation algorithm” a strategy? 

 

 Is the plugIn of simulation algorithms to 

the simulation manager a strategy in the 

CASE Tool? 
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Pattern: Abstract Factory 

Name and classification 

Abstract factory, object-based, creational 

Intent 

Provide an interface for creating families of related 

or dependent objects without specifying their 

concrete classes [GoF] 

Motivation  

Use of different implementations in different contexts 

with easy portability … 
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Pattern: Abstract Factory (cntd) 

AbsFactory 
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Pattern: Singleton (GoF) 

Name and classification 

Singleton, object-based, creational 

Intent 

Ensure that a class has only one instance, and 

provide a global point of access to it [GoF] 

Motivation  

… 
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Pattern: Observer (GoF) 

Name and classification 

Observer, object-based, creational 

 Intent 

Define a one-to-many dependency between objects 

so that when one object changes state, all its 

dependents are notified and updated automatically 

[GoF] 

Motivation  

Update a view when the model (subject) changes … 
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Observer (structure) 

1 
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Summary 

 GoF present 23 patterns 

 There are many more (and more complex 
combinations of patterns, e.g. MVC) 

 

 “Pattern terminology” can be used to communicate 
design! 

 Patterns should not be used to schematically 
(when used manually) 

 Generated code, typically, makes use of many 
patterns.  Automatic code generation “saves us 
making some design decisions” (observer, 
singleton, factory are part of the EMF-generated 
code) 
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 Discussion of a simple model in the project session 

of today’s course!  
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