
Software Engineering 2
A practical course in software engineering

Ekkart Kindler

II. Modelling Software

Ekkart Kindler

3 SE 2 (02162 e14), L02

Modelling Software

 Model based software engineering

(taking models a bit more seriously than we did

traditionally)

 Reverse engineering

Ekkart Kindler

4 SE 2 (02162 e14), L02

1. Motivation

 What are “software models”?

 What are they good for?

 Why do WE need them?

 What is software?

 What is a model?

Ekkart Kindler

5 SE 2 (02162 e14), L02

Modell

Modell [lat.-vulgärlat.-it.] das; -s, -e:

…

7. die vereinfachte Darstellung der Funktion eines

Gegenstands od. des Ablaufs eines

Sachverhalts, die eine Untersuchung od.

Erforschung erleichtert od. erst möglich macht.

…

[nach Duden: Das Fremdwörterbuch, 1990].

Ekkart Kindler

6 SE 2 (02162 e14), L02

Model

Modell [lat.-vulgärlat.-it.] das; -s, -e:

…

7. the simplified description of the function,
purpose, or process of something; it enables us
investigating and analysing this thing.

…

[nach Duden: Das Fremdwörterbuch, 1990].

Ekkart Kindler Reminder (cf. L01)

7 SE 2 (02162 e14), L02

HOW WHAT

Ekkart Kindler

8 SE 2 (02162 e14), L02

Purpose of Models

 better understanding the „thing“ under

investigation (or development)

 communication

 on the appropriate level of abstraction

 with different kinds of people

 from different angles

 abstraction / composition

 analysis and verification

 consistency, completeness, correctness,

performance, risks, effort, …

 code generation (cf. L01)

Ekkart Kindler

9 SE 2 (02162 e14), L02

Reminder (cf. L01)

:Place

:Transition

:Arc

:Transition

:Place

:Arc

:Arc

source

target source

target

target source

:Arc
source target

:Petrinet

:Token

Place Transition

1 source

1 target

Arc

*

PetriNet

Token
*

Node

Object

1 source

1 target

Association Class

ClassDiagram

* *

:Class :Class

:Association

:Association

…

…

Ekkart Kindler

10 SE 2 (02162 e14), L02

Roles of models in SE

 „traditional“: More or less automatic:

 Forward engineering

 Reverse engineering

 Reengineering

 Model Driven Architecture (MDA)

 Generating (at least part of) the

software from models

 Models ARE the software

 (or a part of it)

Ekkart Kindler

11 SE 2 (02162 e14), L02

2.1 „Traditional“

Initially: Informal sketches of software for

discussion, for better understanding or for

communicating an idea

Later: Standardized (graphical) notations (UML)

From these diagrams the program code was

produced (mostly) manually!

Ekkart Kindler

12 SE 2 (02162 e14), L02

„Traditional“

 Since software is often not well-documented, it

became necessary to retrieve or to extract the

essential idea of the software from its code

 These models are used to better understand

the existing software, and to change the

software based on this understanding

Ekkart Kindler

13 SE 2 (02162 e14), L02

Automation

 Some reverse and forward engineering tasks

could be automated (mainly structural parts)

 Changes made in the models obtained by

reverse engineering can (sometimes) be

automatically transferred back into the original

code

Ekkart Kindler

14 SE 2 (02162 e14), L02

2.2. Reverse engineering

Starting point:

 Software cannot be used in isolation

 It interacts with other software

 In most cases, developers must extend
existing software or integrate their software to
existing one

 Existing software is often not documented (or
at least not documented well)

Ekkart Kindler

15 SE 2 (02162 e14), L02

Motivation

 Before you can (use,) change or extend

software, we need to understand it

Ekkart Kindler

16 SE 2 (02162 e14), L02

Definition

 Reverse engineering is the process that, for

an existing software system, tracks down and

retrieves (“mines”) its underlying ideas and

concepts and documents them in form of

models

 The development process is run in the reverse

direction (reverse engineering)

Ekkart Kindler

17 SE 2 (02162 e14), L02

Result

 In the ideal case, the result of reverse

engineering would be a specification of the

software system

 Very important: abstraction and focus on the

essentials

Ekkart Kindler

18 SE 2 (02162 e14), L02

Tools

 Tools can support reverse engineering

 But, they cannot fully relieve an engineer of the
burden of abstraction and focus!

This is the task of an engineer!

 Moreover, many of today’s tools come up with
wrong or incomplete results, which need to be
corrected or amended by hand.

Ekkart Kindler

19 SE 2 (02162 e14), L02

Example: Code

public interface Moveable {

 public void move();

}

public abstract class Element {

 ...

}

public class Track extends Element {

 private Track next;

 private Track prev;

 public Track getNext() {

 return this.next;

 }

 public void setNext(Track value) {

 if (this.next != value) {

 if (this.next != null) {

 Track oldValue = this.next;

 this.next = null;

 oldValue.setPrev (null);

 }

 this.next = value;

 if (value != null) {

 value.setPrev (this);

 }

 }

 }

 public Track getPrev() {

 return this.prev;

 }

 public void setPrev(Track value) {

 if (this.prev != value) {

 if (this.prev != null) {

 Track oldValue = this.prev;

 this.prev = null;

 oldValue.setNext (null);

 }

 this.prev = value;

 if (value != null) {

 value.setNext (this);

 }

 }

 }

}

public class Shuttle extends Element implements Moveable {

 private boolean driving;

 private Track at;

 private Simulation simulation;

 public Track getAt() {

 return this.at;

 }

 public void setAt(Track value) {

 if ((this.at == null && value != null) ||

 (this.at != null && !this.at.equals(value))) {

 this.at = value;

 }

 }

 public boolean isDriving() {

 return this.driving;

 }

 public void setDriving(boolean value) {

 this.driving = value;

 }

 public Simulation getSimulation() {

 return this.simulation;

 }

 public void setSimulation(Simulation value) {

 if (this.simulation != value) {

 if (this.simulation != null) {

 Simulation oldValue = this.simulation;

 this.simulation = null;

 oldValue.removeFromShuttles (this);

 }

 this.simulation = value;

 if (value != null) {

 value.addToShuttles (this);

 }

 }

 }

 public void move() {

 ...

 }

}

Ekkart Kindler

20 SE 2 (02162 e14), L02

Example: Code

public class Simulation {

 private TreeSet shuttles = new TreeSet();

 public void addToShuttles(Shuttle value) {

 if (value != null) {

 boolean changed = this.shuttles.add (value);

 if (changed) {

 value.setSimulation (this);

 }

 }

 }

 public Iterator iteratorOfShuttles() {

 return this.shuttles.iterator ();

 }

 public void removeFromShuttles(Shuttle value) {

 if (value != null) {

 boolean changed = this.shuttles.remove
(value);

 if (changed) {

 value.setSimulation (null);

 }

 }

 }

 public boolean hasInShuttles(Shuttle value) {

...

 }

 public int sizeOfShuttles() {

 ...

 }

 public void removeAllFromShuttles() {

 ...

 }

}

Ekkart Kindler

21 SE 2 (02162 e14), L02

Example: Result (tool)

Ekkart Kindler

22 SE 2 (02162 e14), L02

Example: Result (manual)

Ekkart Kindler

23 SE 2 (02162 e14), L02

Tools (cntd.)

 Much information missing (wrong)

 Redundant information

 Typically, the models cover the structure only;

behaviour models missing

 The results that tools come up with are on a very

low level of abstraction (class diagrams or very

basic design patterns)

  Still very helpful (and current research improves

the situation)

Ekkart Kindler

24 SE 2 (02162 e14), L02

In this course

 We start from existing project (ePNK)

 Models are part of the software;

(it won‘t be necessary to retrieve them)

 We don‘t need to reverse engineer the main

structure of the software (domain model)

(but some ideas might be hidden in the

manually written code).

Ekkart Kindler

25 SE 2 (02162 e14), L02

2.3 Model based SE

Today: We can generate parts of the code form

the UML class diagrams automatically

(MDA, MDE, EMF, EMFT/GMF)

 Class diagrams  Java class stubs with standard

access methods (see RE example)

 Implementation of standard behaviour:

 Loading and saving models

 Accessing and modifying the models

 Editors and graphical user interfaces

 The actual functions is implemented by hand

Future: Actual functions also „modelled“ and

code generated

Ekkart Kindler

26 SE 2 (02162 e14), L02

My favourite example

Place Transition

1 source

1 target

Arc

*

PetriNet

Token
*

Node

Object

From this (EMF) model for Petri nets:
Generation of (Java) code for
• all classes
• methods for changing the Petri net
• loading and saving the Petri net as

XML files (XMI)

Place

Transition

Arc

Token

With this and some more GMF
information:
Generation of the Java code of a
graphical complete editor (with many
fancy features). No programming at all.

Ekkart Kindler

27 SE 2 (02162 e14), L02

Model View Controller (MVC)

The domain models are an (the) essential part of

the software

In addition to that we need

 Information about the presentation of the model to

the user

 The coordination with the user

Ekkart Kindler

28 SE 2 (02162 e14), L02

Modelle View Controller (MVC)

 Model

Place Transition

1 source

1 target

Arc

*

PetriNet

Token
*

Node

Object

View

Controller

:Arc

Ekkart Kindler

29 SE 2 (02162 e14), L02

MVC

Model

Domain model and
functions

View

Representation of model
and user interaction

Controller

Makes changes and calls
functions of the model

queries

informs on
changes

makes changes

selects

informs on
user interactions

Ekkart Kindler

30 SE 2 (02162 e14), L02

MVC

Model

Domain model and
functions

View

Representation of model
and user interaction

Controller

Makes changes and calls
functions of the model

queries

informs on
changes

makes changes

selects

informs on
user interactions

Ekkart Kindler

31 SE 2 (02162 e14), L02

MVC

MVC is a principle (pattern / architecture)

according to which software should be structured

Eclipse and GEF (as well as GMF) are based on

this principle and guide (force) you in properly

using it

Ekkart Kindler

32 SE 2 (02162 e14), L02

EMF, GMF and MVC

 Model

Place Transition

1 source

1 target

Arc

*

PetriNet

Token
*

Node

Object

View

Controller

:Arc

Ekkart Kindler

33 SE 2 (02162 e14), L02

3. Design Patterns (Excursion)

 Design patterns (in software

engineering) are the distilled experience

of software engineering experts on how

to solve standard problems in software

design.

Ekkart Kindler

34 SE 2 (02162 e14), L02

Excursion Design Patterns

 Gamma, Helm, Johnson, Vlissides:

Design Patterns. Addison-Wesley 1995.

 Eric Freeman, Elisabeth Freeman:

Head First Design Patterns. O’Reilly

2004.

 …

Ekkart Kindler

35 SE 2 (02162 e14), L02

Disclaimer

 Design patterns is a topic of its own

 Worth being taught as a separate course

(e.g. seminar)

 This excursion gives just a glimpse of

the idea and some recurring patterns

Ekkart Kindler

36 SE 2 (02162 e14), L02

Scheme (GoF)

 Name and classification

 Intent

 Also known as

 Motivation

 Application

 Structure

 Participants

 Collaboration

 Consequences

 Implementation

 Sample code

 Known uses

 Related patterns

Ekkart Kindler

37 SE 2 (02162 e14), L02

Example: Simulation Algorithm

1

Simulation

Simulator
 sim()

Interface
 sim(Simulation)

Algorithm
 sim(Simulation)

1

<<interface>>

algorithm

Ekkart Kindler

38 SE 2 (02162 e14), L02

Pattern: Strategy (GoF)

Name and classification

Strategy, object-based, behavioural

Intent

Define a family of algorithms, encapsulate each one,

and make them interchangeable. Strategy lets the

algorithm vary independently from clients that use it

[GoF]

Motivation

Avoid hard-wiring of algorithms for making it easier

to change the algorithm …

Ekkart Kindler

39 SE 2 (02162 e14), L02

Pattern: Strategy (cntd.)

Structure

Context
 contextInterface()

Strategy
 algInterface()

AlgorithmB

 algInterface()

1

strategy

AlgorithmA

 algInterface()

AlgorithmC

 algInterface()

Ekkart Kindler

40 SE 2 (02162 e14), L02

Pattern: Strategy (cntd)

Ekkart Kindler

41 SE 2 (02162 e14), L02

Questions

 Is the “simulation algorithm” a strategy?

 Is the plugIn of simulation algorithms to

the simulation manager a strategy in the

CASE Tool?

Ekkart Kindler

42 SE 2 (02162 e14), L02

Pattern: Abstract Factory

Name and classification

Abstract factory, object-based, creational

Intent

Provide an interface for creating families of related

or dependent objects without specifying their

concrete classes [GoF]

Motivation

Use of different implementations in different contexts

with easy portability …

Ekkart Kindler

43 SE 2 (02162 e14), L02

Pattern: Abstract Factory (cntd)

AbsFactory
 createProdA()
createProdB()

Factory1
 createProdA()

createProdB()

Factory2
 createProdA()

createProdB()

Client

AbsProdA

ProdA1 ProdA2

AbsProdB

ProdB1 ProdB2

Ekkart Kindler

44 SE 2 (02162 e14), L02

Pattern: Singleton (GoF)

Name and classification

Singleton, object-based, creational

Intent

Ensure that a class has only one instance, and

provide a global point of access to it [GoF]

Motivation

…

Ekkart Kindler

45 SE 2 (02162 e14), L02

Pattern: Observer (GoF)

Name and classification

Observer, object-based, creational

 Intent

Define a one-to-many dependency between objects

so that when one object changes state, all its

dependents are notified and updated automatically

[GoF]

Motivation

Update a view when the model (subject) changes …

Ekkart Kindler

46 SE 2 (02162 e14), L02

Observer (structure)

1

Subject
attach(Observer)
detach(Observer)

notify()

Observer

update()

ConcrObs

update()

*

observers

ConcrSub
state: State

getState()
setState(State)

subject

notify() {

 forall o:observers

 o.update()

}

Ekkart Kindler

47 SE 2 (02162 e14), L02

Summary

 GoF present 23 patterns

 There are many more (and more complex
combinations of patterns, e.g. MVC)

 “Pattern terminology” can be used to communicate
design!

 Patterns should not be used to schematically
(when used manually)

 Generated code, typically, makes use of many
patterns. Automatic code generation “saves us
making some design decisions” (observer,
singleton, factory are part of the EMF-generated
code)

Ekkart Kindler Example

 Discussion of a simple model in the project session

of today’s course!

48 SE 2 (02162 e14), L02

