
02157
Functional
Program-

ming

Michael R. Hansen02157 Functional Programming
Lecture 8: Verification

Michael R. Hansen

1 DTU Compute, Technical University of Denmark Lecture 8: Verification MRH 29/10/2019

02157
Functional
Program-

ming

Michael R. Hansen

Simple setting

A simple setting for verification of terminating functional programs
having no side-effects

• induction on natural numbers
• inductively defined datatypes (such as lists)
• structural induction on lists

which covers a wide range of interesting programs.

2 DTU Compute, Technical University of Denmark Lecture 8: Verification MRH 29/10/2019

02157
Functional
Program-

ming

Michael R. Hansen

A very, very simple example: factorial function

We prove ∀n ∈ N.fact n = n!, where

let rec fact =
function
| 0 -> 1 (* Case 1 *)
| n -> n * fact(n-1) (* Case 2 *)

using the following well-known induction rule for natural numbers

1. P(0) base case
2. ∀n.(P(n)⇒ P(n + 1)) inductive step

∀n.P(n) What is P(n)?

Base case. We must prove fact 0 = 0! = 1. Trivial.

Inductive step. Consider arbitrary n ∈ N. We must establish

fact n = n!︸ ︷︷ ︸
induction hypothesis︸ ︷︷ ︸

P(n)

⇒ fact(n + 1) = (n + 1)!︸ ︷︷ ︸
P(n+1)

3 DTU Compute, Technical University of Denmark Lecture 8: Verification MRH 29/10/2019

02157
Functional
Program-

ming

Michael R. Hansen

Very, very simple example cont’d

Assume the induction hypothesis:

fact n = n! (Ind .hyp.)

The inductive step is established by:

fact(n + 1)
= (n + 1) · fact n Case 2, as n + 1 6= 0
= (n + 1) · n! Ind .hyp.
= (n + 1)!

Hence ∀n ∈ N.fact n = n! by the induction rule.

Simple induction and equational reasoning

The simple reasoning breaks down in the presence of side effects,
where, for example, e + e = 2e does not necessary hold.

4 DTU Compute, Technical University of Denmark Lecture 8: Verification MRH 29/10/2019

02157
Functional
Program-

ming

Michael R. Hansen

A simple example concerning tail recursion

Iterative version of factorial function:

let rec factA(n,p) =
match n with
| 0 -> p (* Case 1 *)
| _ -> factA(n-1,n*p) (* Case 2 *)

Prove that for every natural number n and every p:

factA(n, p) = n! · p

Advice: State the induction hypothesis explicitly.

5 DTU Compute, Technical University of Denmark Lecture 8: Verification MRH 29/10/2019

02157
Functional
Program-

ming

Michael R. Hansen

Example: iterative factorial function

We prove ∀n ∈ N. ∀p ∈ N.factA(n, p) = n! · p, where

let rec factA(n,p) =
match n with
| 0 -> p (* Case 1 *)
| _ -> factA(n-1,n*p) (* Case 2 *)

using the induction rule for natural numbers.

What is P(n)?

Let P(n) : ∀p ∈ N.factA(n, p) = n! · p.

Base case. We must prove ∀p ∈ N.factA(0, p) = 0! · p. Trivial.

Inductive step. Consider arbitrary n ∈ N. We must establish

∀p ∈ N.factA(n, p) = n! · p︸ ︷︷ ︸
induction hypothesis:P(n)

⇒ ∀p ∈ N.factA(n + 1, p) = (n + 1)! · p︸ ︷︷ ︸
P(n+1)

6 DTU Compute, Technical University of Denmark Lecture 8: Verification MRH 29/10/2019

02157
Functional
Program-

ming

Michael R. Hansen

Example cont’d

Assume the induction hypothesis:

∀p′ ∈ N.factA(n, p′) = n! · p′ (Ind .hyp.)

We must establish: ∀p ∈ N.factA(n + 1, p) = (n + 1)! · p

Consider arbitrary p ∈ N.

factA(n + 1, p)
= factA(n, (n + 1) · p) Case 2, as n + 1 6= 0
= n! · (n + 1) · p Ind .hyp., p′ 7→ (n + 1) · p
= (n + 1)! · p

which establishes the inductive step.

Hence ∀n ∈ N∀p ∈ N.factA(n, p) = n! · p, by the induction rule.

7 DTU Compute, Technical University of Denmark Lecture 8: Verification MRH 29/10/2019

02157
Functional
Program-

ming

Michael R. Hansen

Structural induction over lists

The declaration

type ’a list =
| Nil // Nil is written []
| Cons of ’a * ’a list // Cons(x,xs) is written x::xs

denotes an inductive definition of lists (of type ’a)

• [] is a list
• if x is an element and xs is a list, then x :: xs is a list
• lists can be generated by above rules only

The following structural induction rule is therefore sound:
1. P([]) base case
2. ∀xs.∀x .(P(xs)⇒ P(x :: xs)) inductive step

∀xs.P(xs)

8 DTU Compute, Technical University of Denmark Lecture 8: Verification MRH 29/10/2019

02157
Functional
Program-

ming

Michael R. Hansen

Example

let rec (@) xs ys = match xs with
| [] -> ys
| x::xs -> x::(xs @ ys);;

let rec len = function | [] -> 0 | _::xs -> 1+len xs;;

We prove: ∀xs.len(xs@ys) = len(xs) + len(ys) (1)

Let P(xs) be len(xs@ys) = len(xs) + len(ys)

Base case P([]): len([]@ys) = len(ys) = 0 + len(ys) = len([]) + len(ys)

Inductive step: Consider arbitrary xs and x . Assume P(xs).
We must establish P(x :: xs):

len((x :: xs)@ys)
= len(x :: (xs@ys)) def .append
= 1 + len(xs@ys) def .len
= 1 + (len(xs) + len(ys)) ind .hyp.
= (1 + len(xs)) + len(ys) arith.
= len(x :: xs) + len(ys) def .len

Using the structural induction rule we have established (1)
9 DTU Compute, Technical University of Denmark Lecture 8: Verification MRH 29/10/2019

02157
Functional
Program-

ming

Michael R. Hansen

You can now solve problems like:

Prove
• xs @ [] = xs

• [] @ ys = ys

• [x] @ ys = x::ys

• xs @ (ys @ zs) = (xs @ ys) @ zs

• naiveRev(xs @ ys) = naiveRev ys @ naiveRev xs

• revA(xs,ys) = naiveRev xs @ ys

where revA and naiveRev are declared in the first part of the
lecture.

10 DTU Compute, Technical University of Denmark Lecture 8: Verification MRH 29/10/2019

