=
=
=

"

02157 Functional Programming
Lecture 8: Verification

Michael R. Hansen

31O+ 3o

Flerdn)= 2(“)‘%‘() 8002{2.7182818284
XN =

!

DTU Compute

Department of Applied Mathematics and Computer Science

DTU Compute, Technical University of Denmark Lecture 8: Verification MRH 29/10/2019

Simple setting

"

A simple setting for verification of terminating functional programs
having no side-effects

e induction on natural numbers
¢ inductively defined datatypes (such as lists)
¢ structural induction on lists
which covers a wide range of interesting programs.

2 DTU Compute, Technical University of Denmark Lecture 8: Verification MRH 29/10/2019

A very, very simple example: factorial function

"

We prove Vn € N.fact n = n!, where

let rec fact =

function
[0 —> 1 (x Case 1 =)
| n —=> n * fact(n-1) (x Case 2)

using the following well-known induction rule for natural numbers

1. P(0) base case
2. ¥vn.(P(n)= P(n+1)) inductive step
vn.P(n) What is P(n)?

Base case. We must prove fact0 = 0! = 1. Trivial.

Inductive step. Consider arbitrary n € N. We must establish

factn=n! = fact(n+1)=(n+1)!
——

induction hypothesis P(n+1)
N—_——
P(n)

3 DTU Compute, Technical University of Denmark Lecture 8: Verification MRH 29/10/2019

4

Very, very simple example cont'd

Assume the induction hypothesis:

fact n = n! (Ind.hyp.)

The inductive step is established by:

fact(n+1)

(n+1)-factn Case2,asn+1+#0
= (n+1)-nl Ind.hyp.

(n+1)!

Hence Vn € N.fact n = n! by the induction rule.

Simple induction and equational reasoning

The simple reasoning breaks down in the presence of side effects,

where, for example, e + e = 2e does not necessary

DTU Compute, Technical University of Denmark

hold.

Lecture 8: Verification

=
=
=

"

MRH 29/10/2019

A simple example concerning tail recursion

"

lterative version of factorial function:

let rec factA(n,p) =
match n with
| 0 > p (x Case 1)
| _ —> factA(n-1,nx*p) (x Case 2 x)

Prove that for every natural number n and every p:

factA(n,p) =n!-p

Advice: State the induction hypothesis explicitly.

5 DTU Compute, Technical University of Denmark Lecture 8: Verification MRH 29/10/2019

Example: iterative factorial function

"

We prove Vn € N. Vp € N.factA(n,p) = n! - p, where

let rec factA(n,p) =
match n with
| 0 —>p (» Case 1 «*)
| _ —> factA(n-1,n%*p) (+ Case 2 x)

using the induction rule for natural numbers.
What is P(n)?
Let P(n) : Vp € N.factA(n, p) = n! - p.

Base case. We must prove Vp € N.factA(0, p) = 0! - p. Trivial.

Inductive step. Consider arbitrary n € N. We must establish

Vp € N.factA(n,p) = n! - p = Vp € N.factA(n+1,p) = (n+1)! - p

induction hypothesis:P(n) P(n+1)

6 DTU Compute, Technical University of Denmark Lecture 8: Verification MRH 29/10/2019

Example contd

"

Assume the induction hypothesis:

Vo' € N.factA(n,p’) = n! - p’ (Ind.hyp.)

We must establish: Vp € N.factA(n+1,p) = (n+1)! - p

Consider arbitrary p € N.

factA(n+ 1, p)

factA(n,(n+ 1) - p) Case2,asn+1#0

= nt-(n+1)-p Ind.hyp.,p' — (n+1)-p
(n+1)t-p

which establishes the inductive step.

Hence Vn € NVp € N.factA(n, p) = n! - p, by the induction rule.

7 DTU Compute, Technical University of Denmark Lecture 8: Verification MRH 29/10/2019

Structural induction over lists

"

The declaration

type 'a list =

| Nil // Nil is written T[]
| Cons of "a » "a list // Cons(x,xs) is written x::xs

denotes an inductive definition of lists (of type ’a)
e [Jis alist
e if x is an element and xs is a list, then x :: xs is a list
e lists can be generated by above rules only

The following structural induction rule is therefore sound:

1. P([D) base case
2. Vxs.Vx.(P(xs) = P(x: xs)) inductive step
Vxs.P(xs)
8 DTU Compute, Technical University of Denmark

Lecture 8: Verification MRH 29/10/2019

9

Example

let rec (@) xs ys = match xs with

[[1 -> ys

| x::xs —> x::(xs @ ys);;
let rec len = function | [] -> 0 | _::xs —-> l+len xs;;
We prove: Vxs.len(xsQys) = len(xs) + len(ys) (1)

Let P(xs) be len(xs@ys) = len(xs) + len(ys)
Base case P([]): len([]@ys) = len(ys) = 0 + len(ys) = len([]) + len(ys)

Inductive step: Consider arbitrary xs and x. Assume P(xs).
We must establish P(x :: xs):

len((x :: xs)Qys)

len(x :: (xs@ys)) def.append
= 1+ len(xs@Qys) def.len

= 1+ (len(xs) + len(ys)) ind.hyp.

= (1+len(xs)) + len(ys) arith.

len(x :: xs) + len(ys) def.len

Using the structural induction rule we have established (1)

DTU Compute, Technical University of Denmark Lecture 8: Verification

"

MRH 29/10/2019

10

You can now solve problems like:

Prove
e xs @ [] = xs
* [] @ ys = ys
e [x] @ ys = x::ys

e xs @ (ys @ zs) = (xs @ ys)
e naiveRev(xs @ ys) = naiveRev ys @ naiveRev xs
e revA(xs,ys) = naiveRev xs @ ys

where reva and naiveRev are declared in the first part of the

lecture.

DTU Compute, Technical University of Denmark

Lecture 8: Verification

"

MRH 29/10/2019

