02157 Functional programming Michael R. Hansen
DTU COMPUTE
December 5, 2017

Exercises for Dec. 8": Selected from old exam questions

Exercise 1 Extracted from exam May 30th, 2016

Consider the program skeleton:
let sumGt k xs = List.fold (...) ... xs;

Fill in the two missing pieces (represented by the dots ...), so that sumGt k zs is the sum
of those elements in zs which are greater than k. For example, sumGt4[1;5;2;7;4;8] =
5+ 7+ 8=20.

Exercise 2 Extracted from exam Dec. 20th, 2016

Consider the following F# declarations:

type ’a tree = | Lf
| Br of ’a * ’a tree * ’a tree;;

let rec f(n,t) = match t with

| Lf -> Lf
| Br(a, t1, t2) -> if n>0 then Br(a, f(n-1, t1), f(n-1, t2))
else Lf;;

let rec g p = function
| Br(a, t1, t2) when p a -> Br(a, g p t1, g p t2)
| _ -> Lf;;

let rec h k

function
| Lf -> Lf
| Br(a, t1, t2) -> Br(k a, h k t1, h k t2);;

1. Give the types of £, g and h, and describe what each of these three functions compute.
Your description for each function should focus on what it computes, rather than on
individual computation steps.



Exercise 2 Extracted from exam May 30th, 2016

We shall now consider containers that can either have the form of a tank, that is characterized
by it length, width and height, or the form of a ball, that is characterized by its radius. This
is captured by the following declaration:

type Container = | Tank of int * int * int // (length, width, height)
| Ball of int // radius

1. Declare two F# values of type Container for a tank and a ball, respectively.

2. A tank is called well-formed when its length, width and height are all positive and a ball
is well-formed when its radius is positive. Declare a function isWF : Container — bool
that can test whether a container is well-formed.

3. Declare a function volume ¢ computing the volume of a container c. (Note that the volume

of ball with radius r is § - 7 -r3.)

A cylinder is characterized by its radius and height, where both must be positive integers.

4. Extend the declaration of the type Container so that it also captures cylinders, and extend
the functions isWF and volume accordingly. (Note that the volume of cylinder with radius
r and height h is - 72 - h.)

A storage consist of a collection of uniquely named containers, each having a certain contents,
as modelled by the type declarations:

type Name = string
type Contents = string
type Storage = Map<Name, Contents*Container>

where the name and contents of containers are given as strings.

Note: You may choose to solve the below questions using a list-based model of a storage
(type Storage = (Name * (Contents*Container)) list), but your solutions will, in that
case, at most count 75%.

5. Declare a value of type Storage, containing a tank with name "tank1" and contents "oil"
and a ball with name "balll" and contents "water".

6. Declare a function find : Name — Storage — Contents * int, where findn stg should
return the pair (ent,vol) when cnt is the contents of a container with name n in storage
stg, and vol is the volume of that container. A suitable exception must be raised when no
container has name n in storage stg.



Exercise 3 Extracted from exam Dec. 17th, 2015

We consider the use of appliances (in Danish ‘husholdningsapparater’) like washing machines,
dishwashers and coffee machines. A usage of an appliance a is a pair (a,t), where ¢ is the time
span (in hours) the appliance is used. A usage list is a list of the individual usages during a
full day, that is, 24 hours. This is modelled by:

type Appliance = string

type Usage = Appliance * int
let adl = ("washing machine", 2)
let ad2 = ("coffee machine", 1)

let ad3 = ("dishwasher", 2)

let ats = [adl; ad2; ad3; adl; ad2]

where ats is a value of type Usage list containing one usage of the dishwasher and two
usages of the washing machine and the coffee machine.

1. Declare a function: inv: Usage list -> bool, that checks whether all time spans occur-
ring in a usage list are positive.

2. Declare a function durationOf: Appliance -> Usage list -> int, where the value of
durationOf a ats is the accumulated time span appliance a is used in the list ats. For
example, duration0f "washing machine" ats should be 4.

3. A usage list ats is well-formed if it satisfies inv and the accumulated time span of any
appliance in ats does not exceed 24. Declare a function that checks this well-formedness
condition.

4. Declare a function delete(a, ats), where a is an appliance and ats is a usage list. The
value of delete(a, ats) is the usage list obtained from ats by deletion of all usages of a.
For example, deleting usage of the coffee machine from ats should give [ad1l; ad3; adi].
State the type of delete.

We now consider the price of using appliances. This is based on a tariff mapping an appliance
to the price for one hour’s usage of the appliance:

type Price = int
type Tariff = Map<Appliance, Price>

5. Declare a function isDefined ats trf, where ats is a usage list and trf is a tariff. The value
of isDefined ats trf is true if and only if there is an entry in trf for every appliance in
ats. State the type of isDefined.

6. Declare a function price0f: Usage list -> Tariff -> Price, where the value of priceOf ats trf
is the total price of using the appliances in ats. The function should raise a meaningful
exception when an appliance is not defined in trf.



