
02157 Functional programming Michael R. Hansen
DTU COMPUTE

August 31, 2017

Exercises for Sept. 22nd: Old exam questions

Many central concepts of functional programming are already covered during the first two
weeks of the semester, and you should now be equipped to solve this exercise set, that is
based on old exam questions in 02157 Functional programming.

Please note that the allowed aids at the exam are: “All written material”. Thus, you will not
have laptop, tablet, etc. available at the exam. You are, therefore, encouraged to solve the
problems using paper and pencil before you test your solutions on the computer.

In order to focus on fundamental concepts and program construction techniques, your are
strongly encouraged to solve these exercises without using libraries like the String and List

libraries.

If a question requires you to define a particular function, then you may define as many helper
functions as you want, but in any case you must define the required function so that it has
exactly the type and effect that the question asks for.

You may use a function specified in earlier in the exercise set in a solution to a problem –
even when you do not provide a declaration for the used function.

1

Problem 1 (approx. 30 minutes) From exam May 29th, 2015

1. Declare a function: repeat: string -> int -> string, so that repeat s n builds a new
string by repeating the string s altogether n times. For example: repeat "ab" 4 =
"abababab" and repeat "ab" 0 = "".

2. Declare a function f s1 s2 n that builds a string with n lines alternating between s1 and s2.
For example: f "ab" "cd" 4 = "ab\ncd\nab\ncd" and f "XO" "OX" 3 = "XO\nOX\nXO".
Note that \n is the escape sequence for the newline character.
Give the type of the function.

3. Consider now certain patterns generated from the strings "XO" and "OX". Declare a func-
tion vizm n that gives a string consisting of n lines, where

• the first line contain m repetitions of the string "XO",

• the second line contain m repetitions of the string "OX",

• the third line contain m repetitions of the string "XO",

• and so on.

For example, printfn "%s" (viz 4 5) should generate the following output

XOXOXOXO

OXOXOXOX

XOXOXOXO

OXOXOXOX

XOXOXOXO

Problem 2 (approx. 12 minutes) From exam Dec 18th, 2014

Consider the following declaration:

let rec f i = function

| [] -> []

| x::xs -> (x+i)::f (i*i) xs;;

1. Give the (most general) type of f and describe what f computes. Your description should
focus on what it computes, rather than on individual computation steps. Hint: You may
describe the value of f i [x0;x1;x2; . . . ;xn].

2

Problem 3 (approx. 48 minutes) From exam Dec. 18th, 2014

We consider relations that are represented by lists of pairs: [(x0, ys0); (x1, ys1); . . . ; (xn, ysn)].
We say that x is related to y when there is a pair (xi, ysi) in the list where x = xi and y is
an element of the list ysi. The following type is used for relations:

type Rel<’a,’b when ’a: equality> = (’a * ’b list) list

let rel: Rel<int,string> = [(1, ["a"; "b"; "c"]); (4,["b"; "e"])];;

The value rel describes a relation where, for example, 1 and ”b” and 4 and ”e” are related,
while 1 and ”e” and 2 and ”a” are not related.

We require that the xi’s in [(x0, ys0); (x1, ys1); . . . ; (xn, ysn)] are all different; but we do not
care about repetitions and the order of the elements in ysi.

1. Declare a function: apply: ’a -> Rel<’a,’b> -> ’b list, where applyx rel finds the
list of elements related to x in rel. For example: apply 1 rel = ["a"; "b"; "c"] and
apply 0 rel = [].

2. Declare a function inRelationx y rel that checks whether x and y are related in rel. For
example, inRelation 4 "e" rel = true and inRelation 1 "e" rel = false.

3. Declare a function insertx y rel which returns the relation obtained from rel by adding
that x is related to y. For example: insert 2 "c" [(1,["a"]); (2,["b"])] could give
[(1, ["a"]); (2, ["c"; "b"])].

4. Declare a function toRel:(’a*’b) list -> Rel<’a,’b> that converts a list of pairs to a
relation, e.g. toRel[(2,"c");(1,"a");(2,"b")] could give [(2,["c";"b"]);(1,["a"])].

Problem 4 (approx. 24 minutes) From exam May 24th, 2017

1. Declare a function repeatList: ’a list -> int -> ’a list, so that

repeatListxsn = xs @xs @ · · · @xs, with n occurrences of xs

For example, repeatList [1; 2] 3 = [1; 2; 1; 2; 1; 2] and repeatList [1; 2] 0 = [].

2. Declare a function merge: ’a list * ’a list -> ’a list, so that

merge([x0;x1; . . . ;xm], [y0; y1; . . . ; yn]) =
[x0; y0;x1; y1 . . . ;xm; ym; ym+1; ym+2; . . . ; yn] when m < n
[x0; y0;x1; y1 . . . ;xm; ym] when m = n
[x0; y0;x1; y1 . . . ;xn; yn;xn+1;xn+2; . . . ;xm] when m > n

That is, the function merge can merge the elements of two lists, where the lists need not
have the same size. For example, merge([1; 2], [3; 4]) = [1; 3; 2; 4], merge([1; 2], [3; 4; 5]) =
[1; 3; 2; 4; 5] and merge([1; 2; 3; 4], [5; 6]) = [1; 5; 2; 6; 3; 4].

3

