
Written Examination, May 24th, 2017 Course no. 02157

The duration of the examination is 4 hours.

Course Name: Functional programming

Allowed aids: All written material

The problem set consists of 5 problems which are weighted approximately as follows:
Problem 1: 10%, Problem 2: 15%, Problem 3: 25%, Problem 4: 20%, Problem 5: 30%

Marking: 7 step scale.

Do not use imperative features, like assignments, arrays and so on, in your solutions.

You are allowed to use the .NET library including the modules described in the book,
e.g., List, Set, Map, Seq etc.

You are allowed to use functions from the textbook. If you do so, then provide a
reference to the place where they appear in the book.

02157

DTU CIVILINGENIØREKSAMEN May 24th, 2017 Page 2 of 6 pages

Problem 1 (10%)

1. Declare a function repeatList: ’a list -> int -> ’a list, so that

repeatListxs n = xs @xs @ · · · @xs, with n occurrences of xs

For example, repeatList [1; 2] 3 = [1; 2; 1; 2; 1; 2] and repeatList [1; 2] 0 = [].

2. Declare a function merge: ’a list * ’a list -> ’a list, so that

merge([x0;x1; . . . ;xm], [y0; y1; . . . ; yn]) =
[x0; y0;x1; y1 . . . ;xm; ym; ym+1; ym+2; . . . ; yn] when m < n
[x0; y0;x1; y1 . . . ;xm; ym] when m = n
[x0; y0;x1; y1 . . . ;xn; yn;xn+1;xn+2; . . . ;xm] when m > n

That is, the function merge can merge the elements of two lists, where the lists need not
have the same size. For example, merge([1; 2], [3; 4]) = [1; 3; 2; 4], merge([1; 2], [3; 4; 5]) =
[1; 3; 2; 4; 5] and merge([1; 2; 3; 4], [5; 6]) = [1; 5; 2; 6; 3; 4].

Problem 2 (15%)

Consider the following F# declarations:

let rec f = function
| 0 -> [0]
| i when i>0 -> i::g(i-1)
| _ -> failwith "Negative argument"

and g = function
| 0 -> []
| n -> f(n-1);;

let h s k = seq { for a in s do
yield k a };;

let rec sum xs = match xs with
| [] -> 0
| x::rest -> x + sum rest;;

1. Give the values of f 5 and h (seq [1;2;3;4]) (fun i -> i+10). Furthermore, give
the (most general) types for f and h, and describe what each of these two functions
computes. Your description for each function should focus on what it computes, rather
than on individual computation steps.

2. The function sum is not tail recursive.

• Provide a tail-recursive variant that is based on an accumulating parameter, and
• provide a continuation-based tail-recursive variant of sum.

02157 ... Continued on next page

DTU CIVILINGENIØREKSAMEN May 24th, 2017 Page 3 of 6 pages

Problem 3 (25%)

We consider here articles in a stock as modelled by the following type declarations:

type Article = string
type Amount = int
type Price = int
type Desc = Amount*Price
type Stock = (Article*Desc) list

let st = [("a1",(100,10)); ("a2",(50,20)); ("a3",(25,40))];;

A description (type Desc) of an article is a pair (n, p) where p is the price and n is the
amount of articles that is available in the stock. A stock is a list of pairs (a, d), where a is
an article and d is a description of a. The example stock st above describes three articles,
where, for example, the price of "a2" is 20 and 50 pieces of "a2" are available in st.

1. The value of an article with a description (n, p) is its price times the available amount
of the article, that is n ∗ p, and the value of a stock is the sum of the values of all its
articles. The value of st is 3000. Declare a function that computes the value of a stock.

2. The prices and amounts occurring in descriptions of articles must be positive integers.
Furthermore, the articles occurring in a stock [(a0, d0); (a1, d1); . . . ; (an, dn)] must all be
distinct, that is, ai = aj implies i = j, for 0 ≤ i ≤ n and 0 ≤ j ≤ n. Declare a function:
inv: Stock -> bool, that checks whether a stock satisfies these constraints.

Consider now the following declarations, where an order of k pieces of article a is given by
a pair (a, k):

type Order = Article*Amount
type Status<’a> = Result of ’a | Error of string

3. Declare a function get : Order→ Stock→ Status<Price*Stock> to get a order from
a stock. The value of get (a, k) st is Result(p, st′) when there is a sufficient amount of
article a available in st, p is the price of k pieces of a, and st′ is the stock obtained from
st by removal of k pieces of a. In case an insufficient amount of article a is available
in st, the value of get (a, k) st has the form Error str, where str is a suitable error
message. For example: get ("a2",10) st = Result(200,st′), where the new stock st′

is [("a1",(100,10));("a2",(40,20));("a3",(25,40))]), and get ("a2",60) st =
Error "Insufficient supply for a2".

4. Declare a function getAll : Order list → Stock → Status<Price * Stock>, where
getAll os st gets all orders in os from st. If there is a sufficient amount of articles
available for the orders, then the value is Result(p, st′), where p is the total price for
all orders and st′ is the resulting stock. Otherwise, the value has the form Error str,
where str is an error message.

02157 ... Continued on next page

DTU CIVILINGENIØREKSAMEN May 24th, 2017 Page 4 of 6 pages

Problem 4 (20%)

Consider the following F# declaration of a type for trees:

type T<’a> = | L
| A of ’a * T<’a>
| B of ’a * T<’a> * T<’a>
| C of ’a * T<’a> * T<’a> * T<’a>;;

1. Give a value of type T<int> using all four constructors L, A, B and C. Furthermore, give
a brief informal description of the values of type T<’a>.

Consider now the following declarations:

let rec f1 t = match t with
| B(_, t1,t2) -> f1 t1 && f1 t2
| L -> true
| _ -> false;;

let rec f2 t = match t with
| L -> L
| A(i,t) -> A(i, f2 t)
| B(i,t1,t2) -> B(i, f2 t2, f2 t1)
| C(i,t1,t2,t3) -> C(i, f2 t3, f2 t2, f2 t1);;

let rec f3 h = function
| L -> L
| A(i,t) -> A(h i, f3 h t)
| B(i,t1,t2) -> B(h i, f3 h t1, f3 h t2)
| C(i,t1,t2,t3) -> C(h i, f3 h t1, f3 h t2, f3 h t3);;

2. Give the (most general) types for f1, f2 and f3, and describe what each of these
three functions computes. Your description for each function should focus on what it
computes, rather than on individual computation steps.

02157 ... Continued on next page

DTU CIVILINGENIØREKSAMEN May 24th, 2017 Page 5 of 6 pages

Problem 5 (30%)

In this example we shall consider structured text documents, having paragraphs and
(sub)sections, as modelled by the type declarations:

type Title = string
type Document = Title * Element list
and Element = Par of string | Sec of Document;;

A document is a pair (t, es) consisting of a title t and a list of elements es, where an
element can be a paragraph (constructor Par) characterized by a string or a (sub)section
(constructor Sec) characterized by a document. An example is:

let s1 = ("Background", [Par "Bla"])
let s21 = ("Expressions", [Sec("Arithmetical Expressions", [Par "Bla"]);

Sec("Boolean Expressions", [Par "Bla"])])
let s222 = ("Switch statements", [Par "Bla"])
let s223 = ("Repeat statements", [Par "Bla"])
let s22 = ("Statements",[Sec("Basics", [Par "Bla"]) ; Sec s222; Sec s223])
let s23 = ("Programs", [Par "Bla"])
let s2 = ("The Programming Language", [Sec s21; Sec s22; Sec s23])
let s3 = ("Tasks", [Sec("Frontend", [Par "Bla"]);

Sec("Backend", [Par "Bla"])])
let doc = ("Compiler project", [Par "Bla"; Sec s1; Sec s2; Sec s3]);;

where doc describes a document with title "Compiler project". This document has
three sections, where the section with title "Statements" has a subsection with the title
"Repeat statements", and so on.

Hint: Notice the mutual recursion in the declarations of the types Document and Element.
You may consider using mutually recursive auxiliary functions in your solutions to the
below questions.

1. Declare a function noOfSecs d that counts the number of sections (including subsections)
in the document d. For example, noOfSecs doc is 13 (the number occurrences of
constructor Sec in the value of doc).

2. Declare a function sizeOfDoc d that gives the number of characters in document d, that
is, the sum of the lengths of all strings occurring in titles and paragraphs in d.

3. Declare a function titlesInDoc d that gives a list containing all the titles of sections
and subsections occurring in document d. For example, titlesInDoc doc should con-
tain 13 strings including "Backend" and "Background"; but it should not contain
"Compiler Project" as this is the title of the entire document and not a section title.

02157 ... Continued on next page

DTU CIVILINGENIØREKSAMEN May 24th, 2017 Page 6 of 6 pages

We shall use integer lists, called prefixes, to identify sections in documents in the way you
are familiar with from text documents. The empty prefix, that is [], identifies the title of
the entire document. The table of contents of a document is a list of pairs of prefixes and
titles (of matching (sub)sections or of the entire document):

type Prefix = int list;;
type ToC = (Prefix * Title) list

For example, the subsection with title "Boolean Expressions" is identified by the prefix
[2; 1; 2] as it occurs in the second subsection, of the first subsection in the second section
of doc. The title for this subsection could appear as 2.1.2 Boolean Expressions in a
text document. The table of contents for doc is

[([], "Compiler project");
([1], "Background");
([2], "The Programming Language");
([2;1], "Expressions");
([2;1;1], "Arithmetical Expressions");
([2;1;2], "Boolean Expressions");
([2;2], "Statements");
([2;2;1], "Basics");
([2;2;2], "Switch statements");
([2;2;3], "Repeat statements");
([2;3], "Programs");
([3], "Tasks");
([3;1], "Frontend");
([3;2], "Backend")]

4. Declare a function toc: Document → ToC that generates the table of contents for a
document.

Hint: You may consider using mutually recursive auxiliary functions that may take
prefixes and (in some cases) section counters as extra arguments.

02157

