
Written Examination, December 19th, 2016 Course no. 02157

The duration of the examination is 4 hours.

Course Name: Functional programming

Allowed aids: All written material

The problem set consists of 5 problems which are weighted approximately as follows:
Problem 1: 20%, Problem 2: 15%, Problem 3: 10%, Problem 4: 25%, Problem 5: 30%

Marking: 7 step scale.

Do not use imperative features, like assignments, arrays and so on, in your solutions.

You are allowed to use the .NET library including the modules described in the book,
e.g., List, Set, Map, Seq etc.

You are allowed to use functions from the textbook. If you do so, then provide a
reference to the place where it appears in the book.

In this set there is a minor revision (by Michael R. Hansen, 30-11-2017) involving the type
of the function tryFindPathTo in Problem 5.

02157

DTU CIVILINGENIØREKSAMEN December 19th, 2016 Page 2 of 5 pages

Problem 1 (20%)

We consider here scoreboards containing information about the scores, where a score de-
scribes the points a named person has obtained in an event. This is modelled by the
following type declarations:

type Name = string
type Event = string
type Point = int
type Score = Name * Event * Point

type Scoreboard = Score list

let sb = [("Joe", "June Fishing", 35); ("Peter", "May Fishing", 30);
("Joe", "May Fishing", 28); ("Paul", "June Fishing", 28)];;

The example scoreboard sb describes four scores, where Joe, for example, has obtained 35
points in the fishing event in June and 28 points in the May fishing event. The other two
scores have similar explanations.

1. The points occurring in scores must be non-negative integers, and scores must occur
in scoreboards in a sequence respecting weakly decreasing points, that is, if (n, e, p)
occurs before (n1, e1, p1) in a scoreboard, then p ≥ p1. Hence, a score with the highest
number of points occurs first and a score with the lowest number of points occurs last
in a scoreboard.
Declare a function: inv: Scoreboard -> bool, that checks whether a scoreboard sat-
isfies this constraint.

The functions below must respect the invariant inv, that is, it can be assumed that argu-
ment scoreboards satisfy inv, and it is required that scoreboard results of functions must
satisfy inv.

2. Declare a function insert: Score -> Scoreboard -> Scoreboard, so that insert s sb
gives the scoreboard obtained from sb by insertion of s. The result must satisfy inv.

3. Declare a function get: Name*Scoreboard -> (Event*Point) list, where the value
of get(n, sb) is a list of pairs of events and points obtained from n’s scores in sb. For
example get("Joe",sb) must be a list with the two elements: ("June Fishing", 35)
and ("May Fishing", 28).

4. Declare a function top: int -> Scoreboard -> Scoreboard option. The value of
top k sb is None if k < 0 or sb does not contain k scores; otherwise the value is Some sb′,
where sb′ contains the first k scores of sb.

02157 ... Continued on next page

DTU CIVILINGENIØREKSAMEN December 19th, 2016 Page 3 of 5 pages

Problem 2 (15%)

1. Declare a function replace a b xs that gives the list obtained from xs by replacing every
occurrence of a by b. For example, replace 2 7 [1; 2; 3; 2; 4]= [1; 7; 3; 7; 4].

2. Give the (most general) type of replace.

3. Is your replace function tail recursive? Give the brief informal explanation of your
answer. If it is not tail recursive, then provide a tail-recursive variant that is based on
an accumulating parameter.

Problem 3 (10%)

Consider the following F# declarations:

let pos = Seq.initInfinite (fun i -> i+1) ;;
let seq1 = seq { yield (0,0)

for i in pos do
yield (i,i)
yield (-i,-i) }

let val1 = Seq.take 5 seq1;;

let nat = Seq.initInfinite id;;
let seq2 = seq { for i in nat do

yield (i,0)
for j in [1 .. i] do

yield (i,j) }

let val2 = Seq.toList(Seq.take 10 seq2);;

1. Give the types of the sequences pos, seq1 and val1 and describe their values.

2. Give the type of seq2 and describe the sequence. Furthermore, give the value of val2.

02157 ... Continued on next page

DTU CIVILINGENIØREKSAMEN December 19th, 2016 Page 4 of 5 pages

Problem 4 (25%)

Consider the following F# declaration of a type for binary trees:

type Tree<’a,’b> = | A of ’a | B of ’b
| Node of Tree<’a,’b> * Tree<’a,’b>;;

where a value A a is called an A leaf and a value B b is called a B-leaf.

1. Give three values of type Tree<bool,int list> using the constructors A, B and Node.

2. Declare a function that counts the number of occurrences of A-leaves in a tree.

3. Declare a function

subst:’a -> ’a -> ’b -> ’b -> Tree<’a,’b> -> Tree<’a,’b>
when ’a : equality and ’b : equality

where subst a a′ b b′ t is the binary tree obtained from t by substituting every occurrence
of the A a by A a′ and by substituting every occurrence of the B b by B b′.

Consider the following F# declarations of two functions f and g:

let rec g = function
| Node(t1,t2) -> Node(g t2, g t1)
| leaf -> leaf;;

let rec f = function
| A a -> ([a],[])
| B b -> ([], [b])
| Node(t1,t2) -> let (xs1,ys1) = f t1

let (xs2,ys2) = f t2
(xs1@xs2, ys1@ys2);;

4. Give the (most general) types for f and g, and describe what each of these two functions
computes. Your description for each function should focus on what it computes, rather
than on individual computation steps.

5. Make a continuation-based tail-recursive variant of f.

02157 ... Continued on next page

DTU CIVILINGENIØREKSAMEN December 19th, 2016 Page 5 of 5 pages

Problem 5 (30%)

We consider now trees where nodes can have an arbitrary number of subtrees:

type T<’a> = N of ’a * T<’a> list;;

let td = N("g", []);;
let tc = N("c", [N("d",[]); N("e",[td])]);;
let tb = N("b", [N("c",[])]);;
let ta = N("a", [tb; tc; N("f",[])])

The tree t = N(v, [t0; . . . ; tn−1]) describes a node that contains the value v and has n
(immediate) subtrees ti, for 0 ≤ i < n. For example, the four trees ta - td illustrate trees
having 3, 1, 2 and 0 immediate subtrees, where the values contained in the nodes are the
seven strings "a" - "g".

1. Declare a function toList t which returns a list of all the values occurring in the nodes
of the tree t. The order in which values occur in the list is of no significance.

2. Declare a function map f t, which returns the tree obtained from the t by applying the
function f to the values occurring in the nodes of t. Give the type of map.

We shall use integer lists to denote paths in trees:

type Path = int list;;

A path (type Path) in the tree t = N(v, [t0; . . . ; ti; . . . ; tn−1]) is a list of integers that identifies
a subtree of t in the following recursive manner:

• The empty path (list) [] identifies the entire tree t.

• If is identifies t′ in ti, then i :: is identifies t′ in N(v, [t0; . . . ; ti; . . . ; tn−1]).

For example, the path [0] identifies the subtree tb of ta and the path [1; 1; 0] identifies
the subtree td of ta.

3. Declare a function isPath is t that checks whether is is a path in t.

4. Declare a function get: Path → T<’a> → T<’a>. The value of get is t is the subtree
identified by is in t.

5. Declare a function tryFindPathto : ’a → T<’a> → Path option. When v occurs in
some node of t, then the value of tryFindPathto v t is Some path, where v occurs in the
node of t identified by path. The value of tryFindPathto v t is None when v does not
occur in a node of t. There is no restriction concerning which path the function should
return when v occurs more than once in t.

02157

