Randomized Algorithms I

- Probability
- Contention Resolution
- Minimum Cut

Philip Bille

Probability

- Probability spaces.
 - Set of possible outcomes Ω.
 - Each element $i \in \Omega$ has probability $p(i) \geq 0$ and $\sum_{i \in \Omega} p(i) = 1$.

 - Event E is a subset of Ω and probability of E is $\Pr(E) = \sum_{i \in E} p(i)$.
 - The complementary event \bar{E} is $\Omega - E$ and $\Pr(\bar{E}) = 1 - \Pr(E)$.

- Example. Flip two fair coins.
 - $\Omega = \{HH, HT, TH, TT\}$.
 - $p(i) = 1/4$ for each outcome i.
 - Event E = "the coins are the same".
 - $\Pr(E) = 1/2$.

- Conditional probability.
 - What is the probability that event E occurs given that event F occurred?
 - The conditional probability of E given F:
 \[
 \Pr(E \mid F) = \frac{\Pr(E \cap F)}{\Pr(F)}
 \]

- Example.
 - $\Pr(E \mid F) = \frac{\Pr(E \cap F)}{\Pr(F)} = \frac{2/8}{5/8} = \frac{2}{5}$.
Probability

- Independence.
 - Events E and F are independent if information about E does not affect outcome of F and vice versa.

\[
\Pr(E \mid F) = \Pr(E) \quad \Pr(F \mid E) = \Pr(F)
\]

- Same as \(\Pr(E \cap F) = \Pr(E) \cdot \Pr(F)\)

Randomized Algorithms I

- Probability
- Contention Resolution
- Minimum Cut

Probability

- Union bound.
 - What is the probability that any of event \(E_1, \ldots, E_k\) will happen, i.e., what is \(\Pr(E_1 \cup E_2 \cup \cdots \cup E_k)\)?

\[
\Pr(E_1 \cup \cdots \cup E_k) = \Pr(E_1) + \cdots + \Pr(E_k).
\]

- If events are disjoint, \(\Pr(E_1 \cup \cdots \cup E_k) = \Pr(E_1) + \cdots + \Pr(E_k)\).
- If events overlap, \(\Pr(E_1 \cup \cdots \cup E_k) < \Pr(E_1) + \cdots + \Pr(E_k)\).
- In both cases, the union bound holds:

\[
\Pr(E_1 \cup \cdots \cup E_k) \leq \Pr(E_1) + \cdots + \Pr(E_k)
\]

Contention Resolution

- Contention resolution. Consider \(n\) processes \(P_1, \ldots, P_n\) trying to access a shared database:
 - If two or more processes access database at the same time, all processes are locked out.
 - Processes cannot communicate.
 - Goal. Come up with a protocol to ensure all processes will access database.
 - Challenge. Need symmetry breaking paradigm.
Contention Resolution

- Applications.
 - Distributed communication and interference.
 - Illustrates simplicity and power of randomized algorithms.

- Protocol. Each process accesses the database at time t with probability $p = 1/n$.

```
\text{database}\quad P_1\quad P_2\quad \ldots\quad P_n
```

Contention Resolution

- Analysis. How do we analyze the protocol?

```
\text{P}_i \quad \text{request for access}
```

- Success for a single process in a single round.
 - $S_{i,t}$ event that P_i successfully accesses database at time t.
 - $\Pr(S_{i,t}) = p(1-p)^{n-1} = \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1} \geq \frac{1}{en}$

- Probability that process i requests access.
- Probability that no other process requests access.
- $\left(1 - \frac{1}{n}\right)^{n-1}$ converges to $1/e$ from above.
Contestion Resolution

- Failure for a single process in rounds $1, \ldots, t$.
 - F_{ix} = event that P_i fails to access database in any of rounds $1, \ldots, t$.

$$\Pr(F_{ix}) = \Pr\left(\bigcap_{i=1}^{t} S_{ix}\right) = \prod_{i=1}^{t} \Pr(S_{ix}) = \left(1 - \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1}\right)^t \leq \left(1 - \frac{1}{en}\right)^t$$

- $t = \lceil en \rceil \Rightarrow \Pr(F_{ix}) \leq \left(1 - \frac{1}{en}\right)^{\lceil en \rceil} \leq \left(1 - \frac{1}{en}\right)^{en} \leq \frac{1}{e}$

- $t = \lceil en \rceil (\lceil \ln n \rceil) \Rightarrow \Pr(F_{ix}) \leq \left(\frac{1}{e}\right)^{\lceil \ln n \rceil} = \frac{1}{en^\epsilon} \Rightarrow \Pr(F_{ix}) \leq \frac{1}{en^\epsilon}$

- Conclusion. After $\lceil en \rceil (\lceil \ln n \rceil)$ rounds all processes have accessed database with probability at least $1 - 1/n$.

Randomized Algorithms I

- Probability
- Contention Resolution
- Minimum Cut
Graphs. Consider undirected, connected graph $G = (V,E)$.

Cuts.
- A cut (A,B) is a partition of V into two non-empty disjoint sets A and B.
- The size of a cut (A,B) is the number of edges crossing the cut.
- A minimum cut is a cut of minimum size.

Minimum Cut

Applications.
- Network fault tolerance.
- Image segmentation.
- Parallel computation.
- Social network analysis.
- ...

Which solutions do we know?

Contraction algorithm.
- Pick edge $e = (u,v)$ uniformly at random.
- **Contract** e.
 - Replace e by single vertex w.
 - Preserve edges, updating endpoints of u and v to w.
 - Preserve parallel edges, but remove self-loops.
- Repeat until two vertices a and b left.
- Return cut (all vertices contracted into a, all vertices contracted into b).
Minimum Cut

- **Round 1.**
 - What is the probability that we contract an edge from \(F \) in round 1?
 - Each vertex has \(\deg \geq |F| \) (otherwise smaller cut exists) \(\Rightarrow \sum_{v \in V} \deg(v) \geq |F| \cdot n \).
 - \(\sum_{v \in V} \deg(v) = 2m \Rightarrow m = \frac{\sum_{v \in V} \deg(v)}{2} \geq \frac{|F| \cdot n}{2} \).
 - Probability we contract edge from \(F \) is \(\frac{|F|}{m} \leq \frac{|F|}{|F|/2} = \frac{2}{n} \).

- **Round \(j+1 \).**
 - What is the probability that we contract an edge in round \(j+1 \) from \(F \), given that no edge from \(F \) was contracted in rounds \(1, \ldots, j \)?
 - \(G' \) is graph after \(j \) rounds with \(n-j \) nodes and no edges from \(F \) was contracted in rounds \(1, \ldots, j \).
 - Every cut in \(G' \) is a cut in \(G \Rightarrow \) at least \(|F| \) edges incident to every node in \(G' \)
 - \(\Rightarrow |G'| \) contains at least \(\frac{|F| (n-j)}{2} \) edges \(\Rightarrow \) probability is \(\leq \frac{|F|}{m} = \frac{2}{n-j} \).
Minimum Cut

- **Success after all rounds.**
 - E_j = event that an edge from F is not contracted in round j.
 - The probability that we return the correct minimum cut is $Pr(E_{0,2} \cap \cdots \cap E_1)$.
 - We know:
 - $Pr(E_1) \geq 1 - \frac{2}{n}$
 - $Pr(E_{j+1} | E_1 \cap \cdots \cap E_j) \geq 1 - \frac{2}{n-j}$
 - Conditional probability definition + algebra $\Rightarrow Pr(E_1 \cap \cdots \cap E_{j+1}) \geq \frac{2}{n^2}$.

Minimum Cut

- **Conclusion.**
 - We return the correct minimum cut with probability $\geq \frac{2}{n^2}$ in polynomial time.

 - **Probability amplification.**
 - Correct solution only with very small probability
 - Run contraction algorithm many times and return smallest cut.
 - With n^2 in n runs with independent random choices the probability of failure to find minimum cut is
 $\leq \left(1 - \frac{2}{n^2}\right)^n \leq \left(\frac{1}{e}\right)^{2 \log n} = \frac{1}{n^2}$.

 - **Time.**
 - $\Theta(n^2 \log n)$ iterations that take $\Omega(m)$ time each.
 - More techniques and tricks $\Rightarrow m \log^{O(1)} n$ time solution. [Karger 2000]

Minimum Cut

- **Monte Carlo algorithm.**
 - Randomized algorithm.
 - Guarantee on running time, likely to find correct answer.

 - **Las Vegas algorithm.**
 - Randomized algorithm.
 - Guaranteed to find the correct answer, likely to be fast.

Randomized Algorithms I

- **Probability**
- **Contention Resolution**
- **Minimum Cut**