Partial Sums

- Partial sums. Maintain array $A[0, 1, \ldots, n]$ of integers support the following operations.
 - $\text{UPDATE}(i, \Delta)$: set $A[i] = A[i] + \Delta$

- Applications.
 - Dynamic lists and arrays (random access into changing lists)
 - Arithmetic coding.
 - Succinct data structures.
 - Lower bounds and cell probe complexity.
 - Basic component in many data structures.

- Challenge. How can solve the problem with current techniques?
• **Slow sum and ultra fast updates.** Maintain A explicitly.
 • SUM(i): compute $\text{A}[0] + \ldots + \text{A}[i]$.
 • UPDATE(i, Δ): set $\text{A}[i] = \text{A}[i] + \Delta$.
 • **Time.**
 • $O(i)$ for SUM, $O(1)$ for UPDATE.

• **Ultra fast sum and slow updates.** Maintain partial sum P of A.
 • SUM(i): return $P[i]$.
 • UPDATE(i, Δ): add Δ to $P[i]$, $P[i+1]$, ..., $P[n-1]$.
 • **Time.**
 • $O(1)$ for SUM, $O(n - i + 1) = O(n)$ for UPDATE.

• **Fast sum and fast updates.** Maintain balanced binary tree T on A. Each node stores the sum of elements in subtree.
 • SUM(i): traverse path to $i + 1$ and sum up all off-path nodes.
 • **Time.** $O(\log n)$
Update.
- **Update(i, Δ)**: add Δ to nodes on path to i.

Challenge
- **How can we improve?**
- **In-place data structure**
 - Replace input array A with data structure D of exactly same size.
 - Use only O(1) space in addition to D.

Partial Sums

<table>
<thead>
<tr>
<th>Data structure</th>
<th>SUM</th>
<th>UPDATE</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>explicit array</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(n)</td>
</tr>
<tr>
<td>explicit partial sum</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>balanced binary tree</td>
<td>O(\log n)</td>
<td>O(\log n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>lower bound</td>
<td>O(\log n)</td>
<td>O(\log n)</td>
<td></td>
</tr>
</tbody>
</table>

Partial Sums

- **Fenwick tree.** Replace A by another array F.
 - Recurse on the entries A[2, 4, ..., n] until we are left with a single element.

- **Time.** O(\log n)
Partial Sums

- Fenwick tree. Replace A by another array F.
 - Recurse on the entries \(A[2, 4, .., n] \) until we are left with a single element.
- Space.
 - In-place. No extra space.

Update

- Update \((i, \Delta) \): add \(\Delta \) to partial sums covering \(i \).
 - Indexes \(i_0, i_1, .. \) in \(F \) given by \(i_0 = i \) and \(i_{j+1} = i_j + \text{rmb}(i_j) \), where \(\text{rmb}(i) \) is the integer corresponding to the rightmost 1-bit in \(i \). Stop when we get \(n \).
- Time. \(O(\log n) \)

Data structure	**SUM**	**UPDATE**	**Space**
explicit array | \(O(n) \) | \(O(1) \) | \(O(n) \)
explicit partial sum | \(O(1) \) | \(O(n) \) | \(O(n) \)
balanced binary tree | \(O(\log n) \) | \(O(\log n) \) | \(O(n) \)
lower bound | \(O(\log n) \) | \(O(\log n) \) | \(O(n) \)
Fenwick tree | \(O(\log n) \) | \(O(\log n) \) | in-place
Data Structures II

- Partial Sums
- Dynamic Arrays

Dynamic Arrays

- **Applications.**
 - Dynamic lists and arrays (random access into changing lists)
 - Basic component in many data structures.

- **Challenge.** How can solve the problem with current techniques?

- **Dynamic Arrays.** Maintain array $A[0, ..., n-1]$ of integers support the following operations.
 - $\text{ACCESS}(i)$: return $A[i]$.
 - $\text{INSERT}(i, x)$: insert a new entry with value x immediately to the right of entry i.
 - $\text{DELETE}(i)$: Remove entry i.

 ![Dynamic Arrays example](image)

- **Very fast access and slow updates.** Maintain A explicitly.
 - $\text{ACCESS}(i)$: return $A[i]$.
 - $\text{INSERT}(i, x)$: set $A[i] = x$. Shift all elements to the right of entry i to the right by 1.
 - $\text{DELETE}(i)$: shift all elements to the right of entry i to the left by 1.

- **Time.**
 - $O(1)$ for ACCESS and $O(n-i+1) = O(n)$ for INSERT and DELETE.

 ![Dynamic Arrays example](image)
Fast access and fast updates. Maintain balanced binary tree T on A. Each node stores the number of elements in subtree.

- **ACCESS**(i): traverse path to leaf j.
- **INSERT**(i, x): insert new leaf and update tree.
- **DELETE**(i): delete new leaf and update tree.

Time $O(\log n)$ for ACCESS, INSERT, and DELETE.

Dynamic Arrays

<table>
<thead>
<tr>
<th>Data structure</th>
<th>ACCESS</th>
<th>INSERT</th>
<th>DELETE</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>explicit array</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>balanced binary tree</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>lower bound</td>
<td>$\Omega(\log n/\log \log n)$</td>
<td>$\Omega(\log n/\log \log n)$</td>
<td>$\Omega(\log n/\log \log n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

Challenge. What can we get if we insist on constant time ACCESS?

Rotated array

- Circular shift of array by an offset.
- **Idea.** By moving offset we can delete and insert at endpoints in $O(1)$ time.
- Lead to underflow or overflow.

2-level rotated arrays

- Store \sqrt{n} rotated arrays $R_0, \ldots, R_{\sqrt{n}-1}$ with capacity \sqrt{n} (last may have smaller capacity).
• **ACCESS**.
 • ACCESS(i): compute rotated array R_i and index k corresponding to i. Return $R_i[k]$.
 • Time. $O(1)$

• **INSERT**.
 • INSERT(i, x): find R_i and k as in ACCESS.
 • Rebuild R_i with new entry inserted.
 • Propagate overflow to R_{i+1} recursively.
 • Time. $O(\sqrt{n})$

• **DELETE**.
 • DELETE(i): find R_i and k as in ACCESS.
 • Rebuild R_i with entry i deleted.
 • Propagate underflow to R_{i+1} recursively.
 • Time. $O(\sqrt{n})$

<table>
<thead>
<tr>
<th>Data structure</th>
<th>ACCESS</th>
<th>INSERT</th>
<th>DELETE</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>explicit array</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>balanced binary tree</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>lower bound</td>
<td>$O(\log n / \log \log n)$</td>
<td>$O(\log n / \log \log n)$</td>
<td>$O(\log n / \log \log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>2-level rotated array</td>
<td>$O(1)$</td>
<td>$O(\sqrt{n})$</td>
<td>$O(\sqrt{n})$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>O(1)-level rotated array</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>
Data Structures II

- Partial Sums
- Dynamic Arrays