Data Structures II

• Partial Sums
• Dynamic Arrays
Data Structures II

• Partial Sums

• Dynamic Arrays
Partial Sums

- **Partial sums.** Maintain array $A[0, 1, \ldots, n]$ of integers support the following operations.
 - $\text{UPDATE}(i, \Delta)$: set $A[i] = A[i] + \Delta$

```
 0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16
- 1  2  1  1  0  2  3  1  0  1  3  4  1  1  1  2
```
Partial Sums

• Applications.
 • Dynamic lists and arrays (random access into changing lists)
 • Arithmetic coding.
 • Succinct data structures.
 • Lower bounds and cell probe complexity.
 • Basic component in many data structures.

• Challenge. How can solve the problem with current techniques?
Partial Sums

- Slow sum and ultra fast updates. Maintain A explicitly.
 - $\text{UPDATE}(i, \Delta)$: set $A[i] = A[i] + \Delta$
- Time.
 - $O(i) = O(n)$ for SUM, $O(1)$ for UPDATE.
Partial Sums

• **Ultra fast sum and slow updates.** Maintain partial sum P of A.
 - $\text{SUM}(i)$: return $P[i]$.
 - $\text{UPDATE}(i, \Delta)$: add Δ to $P[i]$, $P[i+1]$, ..., $P[n-1]$.

• **Time.**
 - $O(1)$ for SUM, $O(n - i + 1) = O(n)$ for UPDATE.
• Fast sum and fast updates. Maintain balanced binary tree T on A. Each node stores the sum of elements in subtree.
Partial Sums

- **Sum**.
 - **Sum(i)**: traverse path to i + 1 and sum up all off-path nodes.
- **Time.** \(O(\log n)\)
Partial Sums

- **UPDATE**.
 - **UPDATE**(i, Δ): add Δ to nodes on path to i.
Partial Sums

- **UPDATE.**
 - **UPDATE**(i, Δ): add Δ to nodes on path to i.
- **Time.** O(log n)
Partial Sums

<table>
<thead>
<tr>
<th>Data structure</th>
<th>SUM</th>
<th>UPDATE</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>explicit array</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>explicit partial sum</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>balanced binary tree</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>lower bound</td>
<td>$\Omega(\log n)$</td>
<td>$\Omega(\log n)$</td>
<td></td>
</tr>
</tbody>
</table>

- **Challenge.** How can we improve?
- **In-place data structure.**
 - Replace input array A with data structure D of exactly same size.
 - Use only $O(1)$ space in addition to D.
Fenwick tree. Replace A by another array F.

- Recurse on the entries $A[2, 4, \ldots, n]$ until we are left with a single element.
• **Fenwick tree.** Replace A by another array F.
 • Recurse on the entries $A[2, 4, .., n]$ until we are left with a single element.

• **Space.**
 • In-place. No extra space.
Partial Sums

- **Sum.**
 - Sum(i): add largest partial sums covering [1,..,i].
 - Indexes i_0, i_1, .. in F given by $i_0 = i$ and $i_{j+1} = i_j - \text{rmb}(i_j)$, where rmb($i_j$) is the integer corresponding to the rightmost 1-bit in i. Stop when we get 0.
 - Time. $O(\log n)$

- **Sum(14)?**

 - $14 = 1110_2$
 - $12 = 1100_2$
 - $8 = 1000_2$
 - $0 = 0000_2$
Partial Sums

- Partial Sums

- \[\text{UPDATE.} \]
 - \[\text{UPDATE}(i, \Delta): \text{add} \ \Delta \ \text{to partial sums covering} \ i. \]
 - Indexes \(i_0, i_1, \ldots \) in \(F \) given by \(i_0 = i \) and \(i_{j+1} = i_j + \text{rmb}(i_j) \). Stop when we get \(n \).

- Time. \(O(\log n) \)
Partial Sums

<table>
<thead>
<tr>
<th>Data structure</th>
<th>SUM</th>
<th>UPDATE</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>explicit array</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>explicit partial sum</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>balanced binary tree</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>lower bound</td>
<td>$\Omega(\log n)$</td>
<td>$\Omega(\log n)$</td>
<td></td>
</tr>
<tr>
<td>Fenwick tree</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>in-place</td>
</tr>
</tbody>
</table>
Data Structures II

- Partial Sums
- Dynamic Arrays
Dynamic Arrays

- **Dynamic arrays.** Maintain array A[0,..., n-1] of integers support the following operations.
 - ACCESS(i): return A[i].
 - INSERT(i, x): insert a new entry with value x immediately to the right of entry i.
 - DELETE(i): Remove entry i.
Dynamic Arrays

• **Applications.**
 • Dynamic lists and arrays (random access into changing lists)
 • Basic component in many data structures.

• **Challenge.** How can solve the problem with current techniques?
Dynamic Arrays

- Very fast access and slow updates. Maintain A explicitly.
 - $ACCESS(i)$: return $A[i]$.
 - $INSERT(i, x)$: set $A[i] = x$. Shift all elements to the right of entry i to the right by 1.
 - $DELETE(i)$: shift all elements to the right of entry i to the left by 1.
- Time.
 - $O(1)$ for $ACCESS$ and $O(n-i+1) = O(n)$ for $INSERT$ and $DELETE$.

```plaintext
1 2 1 1 0 2 3 1 0 1 3 4 1 1 1 2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
```
• **Fast access and fast updates.** Maintain balanced binary tree T on A. Each node stores the number of elements in subtree.

 • **ACCESS(i):** traverse path to leaf j.

 • **INSERT(i, x):** insert new leaf and update tree.

 • **DELETE(i):** delete new leaf and update tree.

• **Time.** $O(\log n)$ for **ACCESS**, **INSERT**, and **DELETE**.
Dynamic Arrays

<table>
<thead>
<tr>
<th>Data structure</th>
<th>ACCESS</th>
<th>INSERT</th>
<th>DELETE</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>explicit array</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>balanced binary tree</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>lower bound</td>
<td>$\Omega(\log n/\log \log n)$</td>
<td>$\Omega(\log n/\log \log n)$</td>
<td>$\Omega(\log n/\log \log n)$</td>
<td></td>
</tr>
</tbody>
</table>

- **Challenge.** What can we get if we insist on constant time ACCESS?
Dynamic Arrays

- Rotated array.
 - Circular shift of array by an offset.
- Idea.
 - By moving offset we can delete and insert at endpoints in O(1) time.
 - Lead to underflow or overflow.
Dynamic Arrays

- 2-level rotated arrays.
- Store \sqrt{n} rotated arrays $R_0, ..., R_{\sqrt{n}-1}$ with capacity \sqrt{n} (last may have smaller capacity).
Dynamic Arrays

• ACCESS.
 • ACCESS\((i) \): compute rotated array \(R_j \) and index \(k \) corresponding to \(i \). Return \(R_j[k] \).
• Time. \(O(1) \)
Dynamic Arrays

- **INSERT**.
 - **INSERT**(i, x): find R_j and k as in ACCESS.
 - Rebuild R_j with new entry inserted.
 - Propagate overflow to R_{j+1} recursively.
 - **Time.** \(O(\sqrt{n}) \)
Dynamic Arrays

DELETE(5)

• **DELETE**.
 • DELETE(i): find R_j and k as in ACCESS.
 • Rebuild R_j with entry i deleted.
 • Propagate underflow to R_{j+1} recursively.

• **Time.** \(O(\sqrt{n}) \)
Dynamic Arrays

<table>
<thead>
<tr>
<th>Data structure</th>
<th>ACCESS</th>
<th>INSERT</th>
<th>DELETE</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>explicit array</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>balanced binary tree</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>lower bound</td>
<td>Ω((\frac{\log n}{\log \log n}))</td>
<td>Ω((\frac{\log n}{\log \log n}))</td>
<td>Ω((\frac{\log n}{\log \log n}))</td>
<td></td>
</tr>
<tr>
<td>2-level rotated array</td>
<td>O(1)</td>
<td>O((\sqrt{n}))</td>
<td>O((\sqrt{n}))</td>
<td>O(n)</td>
</tr>
<tr>
<td>O(1)-level rotated array</td>
<td>O(1)</td>
<td>O((n^\varepsilon))</td>
<td>O((n^\varepsilon))</td>
<td>O(n)</td>
</tr>
</tbody>
</table>
Data Structures II

• Partial Sums
• Dynamic Arrays