Dynamic tables

• Problem. Have to assign size of table at initialization.
• Goal. Only use space $\Theta(n)$ for an array with n elements.
• Applications. Stacks, queues, hash tables,…..

Today

• Amortized analysis
• Dynamic tables
• Splay trees

Dynamic tables

• First attempt.
 • Insert:
 • Create a new table of size $n+1$.
 • Move all elements to the new table.
 • Delete old table.
 • Size of table = number of elements

• Too expensive.
 • Have to copy all elements to a new array each time.
 • Insertion of N elements takes time proportional to: $1 + 2 + \cdots + n = \Theta(n^2)$.

• Goal. Ensure size of array does not change to often.
Dynamic tables

• **Doubling.** If the array is full (number of elements equal to size of array) copy the elements to a new array of double size.

```
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

• **Consequence.** Insertion of n elements take time:
 • \(n + \text{number of reinsertions} = n + 1 + 2 + 4 + 8 + \cdots + 2^{\log n} < 3n. \)
 • Space: \(\Theta(n) \).

Amortized Analysis

• **Methods.**
 • Summation (aggregate) method
 • Accounting (tax) method
 • Potential method

Dynamic tables

• **Halving.** If the array is a quarter full copy the elements to a new array of half the size.

```
| 1 | 2 | 3 |
| 4 |
```

• **Consequence.** The array is always between 25% and 100% full.

Summation (Aggregate) method

• **Summation.**
 • Determine total cost.
 • Amortized cost = total cost/#operations.

• **Analysis of doubling strategy:**
 • Total cost: \(n + 1 + 2 + 4 + \cdots + 2^{\log n} = \Theta(n) \).
 • Amortized cost per insert: \(\Theta(1) \).
Dynamic Tables: Accounting Method

- **Analysis**: Allocate 2 credits to each element when inserted.
 - All elements in the array that is beyond the middle have 2 credits.
 - Table not full: insert costs 1, and we have 2 credits to save.
 - Table full, i.e., doubling: half of the elements have 2 credits each. Use these to pay for reinsertion of all in the new array.
 - Amortized cost per operation: 3.

```
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
```

Accounting method

- Accounting/taxation.
 - Some types of operations are overcharged (taxed).
 - Amortized cost of an operation is what we charge for an operation.
 - Credit allocated with elements in the data structure can be used to pay for later operations (only in analysis, not actually stored in data structure!).
 - Total credit must be non-negative at all times.
 - => Total amortized cost an upper bound on the actual cost.

Potential method

- Potential functions.
 - Prepaid credit (potential) associated with the data structure (money in the bank).
 - Ensure there is always enough “money in the bank” (positive potential).
 - Amortized cost of an operation: actual cost plus change in potential.

```
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
```

Dynamic tables

- **Doubling**. If the table is full (number of elements equal to size of array) copy the elements to a new array of double size.
- **Halving**. If the table is a quarter full copy the elements to a new array of half the size.
- Potential function.
 - \(\Phi(D) = \begin{cases}
 2n - L & \text{if } T \geq \frac{L}{2} \\
 L/2 - n & \text{if } T < \frac{L}{2} \end{cases} \)
 - \(L = \text{current array size} \), \(n = \text{number of elements in array} \).
- Inserting when less than half full and still less than half full after insertion:
 - \(n = 7, L = 16 \)
 - amortized cost = \(1 + - = 0 \)
Dynamic tables

- **Doubling.** If the table is full (number of elements equal to size of array) copy the elements to a new array of double size.
- **Halving.** If the table is a quarter full copy the elements to a new array of half the size.
- **Potential function.**
 \[\Phi(D) = \begin{cases}
 2n - L & \text{if } T \text{ at least half full} \\
 L/2 - n & \text{if } T \text{ less than half full}
 \end{cases} \]
 \[L = \text{current array size}, \quad n = \text{number of elements in array}. \]
- **Inserting when less than half full before and half full after:**
 \[n = 8, \; L = 16 \]
 \[\begin{array}{c}
 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
 \end{array} \]
 \[\text{amortized cost} = 1 + \frac{n}{L} = 0 \]

Dynamic tables

- **Doubling.** If the table is full (number of elements equal to size of array) copy the elements to a new array of double size.
- **Halving.** If the table is a quarter full copy the elements to a new array of half the size.
- **Potential function.**
 \[\Phi(D) = \begin{cases}
 2n - L & \text{if } T \text{ at least half full} \\
 L/2 - n & \text{if } T \text{ less than half full}
 \end{cases} \]
 \[L = \text{current array size}, \quad n = \text{number of elements in array}. \]
- **Inserting in full table and doubling**
 \[n = 9, \; L = 16 \]
 \[\begin{array}{c}
 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
 \end{array} \]
 \[\text{amortized cost} = 9 + \frac{n}{L} = 3 \]

Dynamic tables

- **Doubling.** If the table is full (number of elements equal to size of array) copy the elements to a new array of double size.
- **Halving.** If the table is a quarter full copy the elements to a new array of half the size.
- **Potential function.**
 \[\Phi(D) = \begin{cases}
 2n - L & \text{if } T \text{ at least half full} \\
 L/2 - n & \text{if } T \text{ less than half full}
 \end{cases} \]
 \[L = \text{current array size}, \quad n = \text{number of elements in array}. \]
- **Deleting in a quarter full table and halving**
 \[n = 3, \; L = 8 \]
 \[\begin{array}{c}
 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
 \end{array} \]
 \[\text{amortized cost} = 3 + \frac{n}{L} = 0 \]
Splay Trees

• Self-adjusting BST (Sleator-Tarjan 1983).
 • Most frequently accessed nodes are close to the root.
 • Tree reorganizes itself after each operation.
 • After access to a node it is moved to the root by splay operation.
 • Worst case time for insertion, deletion and search is $O(n)$. Amortised time per operation $O(\log n)$.

• Operations. Search, predecessor, successor, max, min, insert, delete, join.

Splaying

• \textbf{Splay(x)}: do following rotations until x is the root. Let y be the parent of x.
 • right (or left): if x has no grandparent.

right rotation at x (and left rotation at y)

Splaying

• \textbf{Splay(x)}: do following rotations until x is the root. Let $p(x)$ be the parent of x.
 • right (or left): if x has no grandparent.
 • zig-zag (or zag-zig): if one of x, $p(x)$ is a left child and the other is a right child.

zig-zag at x
Splaying

- **Splay(x):** do following rotations until x is the root. Let y be the parent of x.
 - right (or left): if x has no grandparent.
 - zig-zag (or zag-zig): if one of x,y is a left child and the other is a right child.
 - roller-coaster: if x and p(x) are either both left children or both right children.

Example. Splay(1)

\[\begin{align*}
\text{Splay right roller-coaster at 1} \\
1 & \quad 2 & \quad 3 \\
4 & \quad 5 & \quad 6 \\
7 & \quad 8 & \quad 9 \\
10 & \quad &
\end{align*} \]

Splay

- Example. Splay(1)
Example. Splay(1)

right roller-coaster at 1

Example. Splay(1)

right roller-coaster at 1

Example. Splay(1)

right roller-coaster at 1

Example. Splay(1)

right rotation at 1
• Example. Splay(1)

right rotation at 1

• Example. Splay(3)

zig-zag at 3

• Example. Splay(3)

zig-zag at 3

• Example. Splay(3)

roller-coaster at 3
Splay

• Example. Splay(3)

roller-coaster at 3

Splay

• Example. Splay(3)

zag-zig at 3

Splay

• Example. Splay(3)

roller-coaster at 3

Splay

• Example. Splay(3)

zag-zig at 3
Splay Trees

- **Search(x)**. Find node containing key x (or predecessor/successor) using usual search algorithm. Splay found node.
- **Insert(x)**. Insert node containing key x using algorithm for binary search trees. Splay found node.
- **Delete(x)**. Find node x, splay it and delete it. Tree now divided in two subtrees. Find node with largest key in left subtree, splay it and join it to the right subtree by making it the new root.

Deletion in Splay Trees

- **Delete 6**.

![Diagram of deletion in Splay Trees](image)

Deletion in Splay Trees

- **Delete 6**.

![Diagram of deletion in Splay Trees](image)
Analysis of splay trees

• Amortized cost of a search, insert, or delete operation is $O(\log n)$.
• All costs bounded by splay.

Potential function.

$\Phi = \sum_v \text{rank}(v) = \sum_v \lfloor \log \text{size}(v) \rfloor$

Rotation Lemma

• Proof of rotation lemma: Single rotation.
 • Actual cost: 1
 • Change in potential:
 • Only x and y can change rank.
 • Change in potential at most $r'(x) - r(x)$.
 • Amortized cost $\leq 1 + r'(x) - r(x) \leq 1 + 3r'(x) - 3r(x)$.

Rotation Lemma

• Proof of rotation lemma: zig-zag.
 • Actual cost: 2
 • Change in potential:
 • Only x, w and z can change rank.
 • Change in potential at most $2r'(x) - 2r(x) - 2$.
 • Amortized cost $\leq 2 + 2r'(x) - 2r(x) - 2 \leq 2r'(x) - 2r(x) - 3r'(x) - 3r(x)$.