P and NP

Inge Li Gertz

Thank you to Kevin Wayne, Philip Bille and Paul Fischer for inspiration to slides

1

Overview

• Problem classification
 • Tractable
 • Intractable

• Reductions
 • Tools for classifying problems according to relative hardness

Warm Up: Super Hard Problems

• Undecidable. No algorithm possible.
• Example. $\text{Halt}(P, x) = \text{true}$ if and only if P halts on input x.
• Claim. There is no general algorithm to solve $\text{Halt}(P, x)$
• Proof (by contradiction)
 • Suppose algorithm for $\text{Halt}(P, x)$ exists.
 • Consider algorithm $\text{A}(P)$ which loops infinitely if $\text{Halt}(P, P)$ and otherwise halts.
 • Since $\text{Halt}(P, x)$ exists for all algorithms P we can use it on $\text{A}(A)$ and the following happens:
 • If $\text{Halt}(A, A)$ then we loop infinitely.
 • Else (not $\text{Halt}(A, A)$) we halt.

Problem Classification

• Q. Which problems will we be able to solve in practice?
• A. Those with polynomial-time algorithms. (working definition) [von Neumann 1953, Godel 1956, Cobham 1964, Edmonds 1965, Rabin 1966]

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortest path</td>
<td>Longest path</td>
</tr>
<tr>
<td>Min cut</td>
<td>Max cut</td>
</tr>
<tr>
<td>Soccer championship (2-point rule)</td>
<td>Soccer championship (3-point rule)</td>
</tr>
<tr>
<td>Primality testing</td>
<td>Factoring</td>
</tr>
</tbody>
</table>
Problem Classification

- Ideally, classify problems according to those that can be solved in polynomial-time and those that cannot.
- Provably requires exponential-time.
 - Given a board position in an n-by-n generalization of chess, can black guarantee a win?
- Provably undecidable.
 - Given a program and input there is no algorithm to decide if program halts.
- Frustrating news. Huge number of fundamental problems have defied classification for decades.

Instances

- A problem (problem type) is the general, abstract term:
 - Examples: Shortest Path, Maximum Flow, Closest Pair, Sequence Alignment, String Matching.
- A problem instance is the concrete realization of a problem.
 - Maximum flow. The instance consists of a flow network.
 - Closest Pair. The instance is a set of points
 - String Matching. The instance consists of two strings.

Polynomial-time Reductions

Polynomial-time reduction

- Reduction. Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using:
 - Polynomial number of standard computational steps, plus
 - Polynomial number of calls to oracle that solves problem Y.
- Notation. $X \leq_P Y$.
- We pay for time to write down instances sent to black box \Rightarrow instances of Y must be of polynomial size.
Maximum flow and bipartite matching

- Bipartite matching \leq_P Maximum flow

Maximum flow and maximum bipartite matching

- Bipartite matching \leq_P Maximum flow
 - Matching $M \Rightarrow$ flow of value $|M|
 - Flow of value $v(f) \Rightarrow$ matching of size $v(f)$

Polynomial-time reductions

- **Purpose.** Classify problems according to relative difficulty.
 - **Design algorithms.** If $X \leq_P Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time.
 - **Establish intractability.** If $X \leq_P Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial-time.
 - **Establish equivalence.** If $X \leq_P Y$ and $Y \leq_P X$, we use notation $X =_P Y$.

Independent set and vertex cover

- **Independent set:** A set S of vertices where no two vertices of S are neighbors (joined by an edge).
- **Independent set problem:** Given graph G and an integer k, is there an independent set of size $\geq k$?
 - **Example:**
 - Is there an independent set of size ≥ 6?
Independent set and vertex cover

- **Independent set**: A set S of vertices where no two vertices of S are neighbors (joined by an edge).
- **Independent set problem**: Given graph G and an integer k, is there an independent set of size $\geq k$?

 - Example:
 - Is there an independent set of size ≥ 6? Yes
 - Is there an independent set of size ≥ 7? No

- **Vertex cover**: A set S of vertices such that all edges have at least one endpoint in S.
- **Independent set problem**: Given graph G and an integer k, is there a vertex cover of size $\leq k$?

 - Example:
 - Is there a vertex cover of size ≤ 4?
Independent set and vertex cover

- **Vertex cover**: A set S of vertices such that all edges have at least one endpoint in S.
- **Independent set problem**: Given graph G and an integer k, is there a vertex cover of size $\leq k$?

- **Example**:
 - Is there a vertex cover of size ≤ 4? Yes

\[\text{vertex cover} \]

Independent set and vertex cover

- **Vertex cover**: A set S of vertices such that all edges have at least one endpoint in S.
- **Independent set problem**: Given graph G and an integer k, is there a vertex cover of size $\leq k$?

- **Example**:
 - Is there a vertex cover of size ≤ 4? Yes
 - Is there a vertex cover of size ≤ 3?

\[\text{vertex cover} \]

\[\text{independent set} \]

\[\text{independent set} \]

\[\text{vertex cover} \]

Claim. Let $G=(V,E)$ be a graph. Then S is an independent set if and only if its complement $V-S$ is a vertex cover.

Proof.

\Rightarrow: S is an independent set.

\Leftarrow: S is a vertex cover.
Claim. Let $G=(V,E)$ be a graph. Then S is an independent set if and only if its complement $V-S$ is a vertex cover.

Proof.

$=>$: S is an independent set.
- e cannot have both endpoints in S => e have an endpoint in $V-S$.
- $V-S$ is a vertex cover.

<=$: V-S$ is a vertex cover.
- u and v not part of the vertex cover => no edge between u and v
- S is an independent set.
Set cover

- Set cover. Given a set U of elements, a collection of sets S_1, \ldots, S_m of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?

Example:
- Does there exist a set cover of size at most 6? Yes
Set cover

- Given a set U of elements, a collection of sets S_1, \ldots, S_m of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?

Example:
- Does there exist a set cover of size at most 6? Yes
- Does there exist a set cover of size at most 4? Yes
- Does there exist a set cover of size at most 3? No

Set cover

- Given a set U of elements, a collection of sets S_1, \ldots, S_m of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?

Example:
- Does there exist a set cover of size at most 6? Yes
- Does there exist a set cover of size at most 4? Yes
- Does there exist a set cover of size at most 3? No

Reduction from vertex cover to set cover

- Given a set U of elements, a collection of sets S_1, \ldots, S_m of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?

Example:
- Does there exist a set cover of size at most 6? Yes
- Does there exist a set cover of size at most 4? Yes
- Does there exist a set cover of size at most 3? No
Reduction from vertex cover to set cover

- vertex cover ≤ set cover
- \(U = \{e_1, e_2, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}, e_{12}, e_{13}, e_{14}\} \)
- \(S_1 = \{e_1, e_2, e_3, e_4\} \)
- \(S_2 = \{e_1, e_{11}, e_{10}\} \)
- \(S_3 = \{e_2, e_8\} \)
- \(S_4 = \{e_3, e_9\} \)
- \(S_5 = \{e_4, e_5\} \)
- \(S_6 = \{e_5, e_6, e_7\} \)
- \(S_7 = \{e_7, e_{13}\} \)
- \(S_8 = \{e_8, e_9, e_{10}, e_{12}, e_{13}, e_{14}\} \)
- \(S_9 = \{e_{11}, e_{12}\} \)
- \(S_{10} = \{e_{15}, e_{16}\} \)

Polynomial-time reductions

- Reduction. \(X \leq_p Y \) if arbitrary instances of problem \(X \) can be solved using:
 - Polynomial number of standard computational steps, plus
 - Polynomial number of calls to oracle that solves problem \(Y \).

- Strategy to make a reduction if we only need one call to the oracle/black box to solve \(X \):
 1. Show how to turn (any) instance \(S_x \) of \(X \) into an instance \(S_y \) of \(Y \) in polynomial time.
 2. Show that: \(S_x \) a yes instance of \(X \) => \(S_y \) a yes instance of \(Y \).
 3. Show that: \(S_y \) a yes instance to \(Y \) => \(S_x \) a yes instance of \(X \).

- Reductions that needs more than one call to black box:
 1. Show how to turn (any) instance \(S_x \) of \(X \) into a polynomial number instance of \(S_y,i \) of \(Y \) in polynomial time.
 2. Show: \(S_x \) a yes instance of \(X \) => one of the instances \(S_y,i \) is a yes instance of \(Y \).
 3. Show: one of the instances \(S_y,i \) is a yes instance of \(Y \) => \(S_x \) a yes instance of \(X \).

The class P

- \(P \) – problems solvable in deterministic polynomial time.
 - Given a problem type \(X \), there is a deterministic algorithm \(A \) which for every problem instance \(I \in X \) solves \(I \) in a time that is polynomial in \(|I| \), the size of \(I \).
 - I.e., the running time of \(A \) is \(O(|I|^{k}) \) for all \(I \in X \), where \(k \) is constant independent of the instance \(I \).

- Examples.
 - Closest pair: There is an algorithm \(A \) such that for every set \(S \) of points, \(A \) finds a closest pair in time \(O(|S|^{2}) \).
 - Maximum flow: There is an algorithm \(A \) such that for any network, \(A \) finds a maximum flow in time \(O(|V|^{3}) \), where \(V \) is the set of vertices.
Problem [POTATO SOUP]. A recipe calls for B grams of potatoes. You have a K kilo bag with n potatoes. Can one select some of them such that their weight is exactly B grams?

Best known solution: create all 2^n subsets and check each one.

Best problems: Example

- Problem [POTATO SOUP]. A recipe calls for B grams of potatoes. You have a K kilo bag with n potatoes. Can one select some of them such that their weight is exactly B grams?

- Best known solution: create all 2^n subsets and check each one.

The class NP

- Certifier. Algorithm $B(s,t)$ is an efficient certifier for problem X if:
 1. $B(s,t)$ runs in polynomial time.
 2. For every instance s: s is a yes instance of X if and only if t is a certificate of length polynomial in s and $B(s,t)$ returns yes.

- Example. Independent set.
 - s: a graph G and an integer k.
 - t: a set of vertices from G.
 - $B(s,t)$ returns yes if and only if t is an independent set of G and $|S| \geq k$.
 - This can be checked in polynomial time by checking that no two vertices in t are neighbors and that the size is at least k.

- A problem X is in the class NP (Non-deterministic Polynomial time) if X has an efficient certifier.

Optimization vs decision problems

- Consider decision problems (yes-no-problems).
 - Example.
 - [POTATO SOUP]. A recipe calls for B grams of potatoes. You have a K kilo bag with n potatoes. Can one select some of them such that their weight is exactly B grams?
 - Optimization vs decision problem
 - [OPTIMIZATION LONGEST PATH] Given a graph G. What is the length of the longest simple path?
 - [DECISION LONGEST PATH] Given a graph G and integer k. Is a there a simple path of length $\geq k$?

- Exercise. Show that OPTIMIZATION LONGEST PATH can be solved in polynomial time if and only if DECISION LONGEST PATH can be solved in polynomial time.

- Many problems share the above features
 - Can be solved in time $2^{|T|}$ (by trying all possibilities.)
 - Given a potential solution, it can be checked in time $O(|I|^k)$, whether it is a solution or not.

- These problems are called polynomially checkable.
 - A solution can be guessed, and then verified in polynomial time.
P vs NP

- P solvable in deterministic polynomial time.
- NP solvable in non-deterministic polynomial time/ has an efficient (polynomial time) certifier.
- P ≤ NP (every problem T which is in P is also in NP).
- It is not known (but strongly believed) whether the inclusion is proper, that is whether there is a problem in NP which is not in P.
- There is subclass of NP which contains the hardest problems, NP-complete problems:
 - X is NP-Complete if
 - X ∈ NP
 - Y ≤P X for all Y ∈ NP

Examples of NP-complete problems

- Preparing potato soup
- Packing your suitcase
- Satisfiability of clauses
- Partition
- Subset-sum
- Hamilton Cycle
- Travelling Salesman
- Bin Packing
- Knapsack
- Clique
- Independent Set
- Vertex Cover
- Set Cover

NP-complete problems

- [SOCCER CHAMPIONSHIP 3-POINT RULE] In a football league n teams compete for the championship. The league uses the 3-point rule, i.e., the points of match are distributed as 3:0, 1:1, or 0:3.
 - Input. The table with the points of every team at some point in the season, a list of the matches to be played in that season and the name of some team.
 - Output. YES if the named team still can become champion
 NO otherwise.

NP-complete problems

- [SATISFIABILITY]
 - Input: A set of clauses C = {c1, ..., ck} over n boolean variables x1, ..., xn.
 - Output:
 - YES if there is a satisfying assignment, i.e., if there is an assignment ε: {x1, ..., xk} → {0, 1} such that every clause is satisfied,
 - NO otherwise.

\[
(\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor x_2 \lor x_4) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3)
\]

instance is

\[
x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1
\]

proposed solution/certificate 1
NP-complete problems

• [HAMILTONIAN CYCLE].
 • Input: Undirected graph G
 • Output:
 • YES if there exists a simple cycle that visits every node
 • NO otherwise

• Traveling Salesperson Problem TSP: Given a set of n cities and a pairwise distance function \(d(u, v)\), is there a tour of length \(\leq D\)?

How to prove a problem is NP-complete

1. Prove \(Y \in \text{NP}\) (that it can be verified in polynomial time).
2. Select a known NP-complete problem \(X\).
3. Give a polynomial time reduction from \(X\) to \(Y\) (prove \(X \leq_p Y\)):
 • Explain how to turn an instance of \(X\) into one or more instances of \(Y\)
 • Explain how to use a polynomial number of calls to the black box algorithm/oracle for \(Y\) to solve \(X\).
 • Prove/argue that the reduction is correct.
Reduction example

- **HAMILTONIAN CYCLE**. Given a undirected graph \(G = (V, E) \), does there exists a simple cycle that visits every node?
- **TRAVELLING SALESMAN (TSP)** Given a set of \(n \) cities and a pairwise distance function \(d(u, v) \), is there a tour of length \(\leq D \)?

Show Hamiltonian Cycle \(\leq \text{P} \) TSP:
- Idea: For every instance of Hamiltonian Cycle create an instance of TSP such that the TSP instance has tour of length \(\leq n \) if and only if \(G \) has a Hamiltonian cycle.

Reduction.
- Given instance \(G = (V, E) \) of Hamiltonian Cycle, create \(n \) cities with distance function

\[
d(u, v) = \begin{cases}
1 & \text{if } (u, v) \in E \\
2 & \text{if } (u, v) \notin E
\end{cases}
\]

- TSP instance has tour of length \(\leq n \) if and only if \(G \) has a Hamiltonian cycle.

Reduction example

- Let \(G = (E, V) \) a directed graph.
 - Make one glass for every node \(i \in V \).
 - If \((i, j) \in E \) ensure:
 - Glass \(i \) is red, glass \(j \) is yellow.
 - If \((i, j) \notin E \) ensure:
 - Glass \(i \) is blue, glass \(j \) is yellow.
 - Height of the cupboard is \(|V| - 1 + \text{height of glass} \)

Reduction example

- **GLASSES IN A CUPBOARD**. You have \(n \) glasses of equal height. If glass \(g_j \) is put into glass \(g_i \), let \(d_{ij} \) be the amount of \(g_j \) above the rim of \(g_i \). You want to stack them into a single stack, so they fit into a cupboard of height \(h \); is that possible?

Glasses in a Cupboard in NP: Proposed solution can be verified in polynomial time.

NP-completeness:
- Reduction from Directed Hamiltonian Path (DHP).
- Directed Hamiltonian Path: Given a directed graph \(G \), is there a directed simple path visiting all vertices.
- DHP is NP-complete
- Reduction: For every instance (graph) of DHP make a set of glasses and a cupboard, such that the glasses can be stacked into the cupboard if and only if the graph has a Hamiltonian path.
The Main Question: P Versus NP

- Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
 - Is the decision problem as easy as the certification problem?
 - Clay $1 million prize.

- Consensus opinion on P = NP? Probably no.