P and NP

Inge Li Gørtz
Overview

• Problem classification
 • Tractable
 • Intractable

• Reductions
 • Tools for classifying problems according to relative hardness
Undecidable. No algorithm possible.

Example. Halt \((P, x) = true\) if and only if \(P\) halts on input \(x\).

Claim. There is no general algorithm to solve \(\text{Halt}(P, x)\)

Proof (by contradiction)

- Suppose algorithm for \(\text{Halt}(P, x)\) exists.
- Consider algorithm \(A(P)\) which loops infinitely if \(\text{Halt}(P,P)\) and otherwise halts.
- Since \(\text{Halt}(P,x)\) exists for all algorithms \(P\) we can use it on \(A(A)\) and the following happens:
 - If \(\text{Halt}(A,A)\) then we loop infinitely.
 - Else (not \(\text{Halt}(A,A)\)) we halt.
Problem Classification

- Q. Which problems will we be able to solve in practice?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortest path</td>
<td>Longest path</td>
</tr>
<tr>
<td>Min cut</td>
<td>Max cut</td>
</tr>
<tr>
<td>Soccer championship (2-point rule)</td>
<td>Soccer championship (3-point rule)</td>
</tr>
<tr>
<td>Primality testing</td>
<td>Factoring</td>
</tr>
</tbody>
</table>
Problem Classification

• Ideally, classify problems according to those that can be solved in polynomial-time and those that cannot.

• Provably requires exponential-time.
 • Given a board position in an n-by-n generalization of chess, can black guarantee a win?

• Provably undecidable.
 • Given a program and input there is no algorithm to decide if program halts.

• Frustrating news. Huge number of fundamental problems have defied classification for decades.
Polynomial-time Reductions
Instances

• A **problem** (problem type) is the general, abstract term:
 • Examples: Shortest Path, Maximum Flow, Closest Pair, Sequence Alignment, String Matching.

• A **problem instance** is the concrete realization of a problem.
 • Maximum flow. The instance consists of a flow network.
 • Closest Pair. The instance is a set of points
 • String Matching. The instance consists of two strings.
Polynomial-time reduction

- **Reduction.** Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using:
 - Polynomial number of standard computational steps, plus
 - Polynomial number of calls to oracle that solves problem Y.

- **Notation.** $X \leq_P Y$.
- **We pay for time to write down instances sent to black box** \Rightarrow instances of Y must be of polynomial size.
Maximum flow and bipartite matching

• Bipartite matching $\leq \text{P} \text{ Maximum flow}$
Maximum flow and maximum bipartite matching

- Bipartite matching \leq_P Maximum flow
 - Matching M \Rightarrow flow of value $|M|$
 - Flow of value $v(f)$ \Rightarrow matching of size $v(f)$
Polynomial-time reductions

• **Purpose.** Classify problems according to *relative* difficulty.

• **Design algorithms.** If $X \leq_P Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time.

• **Establish intractability.** If $X \leq_P Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.

• **Establish equivalence.** If $X \leq_P Y$ and $Y \leq_P X$, we use notation $X =_P Y$.

 up to a polynomial factor
Independent set and vertex cover

• **Independent set**: A set S of vertices where no two vertices of S are neighbors (joined by an edge).

• **Independent set problem**: Given graph G and an integer k, is there an independent set of size $\geq k$?

• Example:
 • Is there an independent set of size ≥ 6?
Independent set and vertex cover

- **Independent set**: A set S of vertices where no two vertices of S are neighbors (joined by an edge).
- **Independent set problem**: Given graph G and an integer k, is there an independent set of size $\geq k$?

- Example:
 - Is there an independent set of size ≥ 6? Yes
Independent set and vertex cover

• **Independent set**: A set S of vertices where no two vertices of S are neighbors (joined by an edge).

• **Independent set problem**: Given graph G and an integer k, is there an independent set of size $\geq k$?

• Example:
 - Is there an independent set of size ≥ 6? Yes
 - Is there an independent set of size ≥ 7?
Independent set and vertex cover

- **Independent set**: A set S of vertices where no two vertices of S are neighbors (joined by an edge).

- **Independent set problem**: Given graph G and an integer k, is there an independent set of size $\geq k$?

- **Example**:
 - Is there an independent set of size ≥ 6? Yes
 - Is there an independent set of size ≥ 7? No
Independent set and vertex cover

- **Vertex cover:** A set S of vertices such that all edges have at least one endpoint in S.
- **Independent set problem:** Given graph G and an integer k, is there a vertex cover of size $\leq k$?

- Example:
 - Is there a vertex cover of size ≤ 4?
Independent set and vertex cover

• **Vertex cover**: A set S of vertices such that all edges have at least one endpoint in S.

• **Independent set problem**: Given graph G and an integer k, is there a vertex cover of size $\leq k$?

• Example:
 - Is there a vertex cover of size ≤ 4? Yes
Independent set and vertex cover

• **Vertex cover:** A set S of vertices such that all edges have at least one endpoint in S.

• **Independent set problem:** Given graph G and an integer k, is there a vertex cover of size $\leq k$?

• Example:
 • Is there a vertex cover of size ≤ 4? Yes
 • Is there a vertex cover of size ≤ 3?
Independent set and vertex cover

- **Vertex cover**: A set S of vertices such that all edges have at least one endpoint in S.
- **Independent set problem**: Given graph G and an integer k, is there a vertex cover of size $\leq k$?

- **Example**:
 - Is there a vertex cover of size ≤ 4? Yes
 - Is there a vertex cover of size ≤ 3? No
Independent set and vertex cover

- **Claim.** Let $G=(V,E)$ be a graph. Then S is an independent set if and only if its complement $V-S$ is a vertex cover.

- **Proof.**
 - \Rightarrow: S is an independent set.
Independent set and vertex cover

• **Claim.** Let $G=(V,E)$ be a graph. Then S is an independent set if and only if its complement $V-S$ is a vertex cover.

• **Proof.**

 • \Rightarrow: S is an independent set.

 • e cannot have both endpoints in S \Rightarrow e have an endpoint in $V-S$.

 • $V-S$ is a vertex cover.
Claim. Let \(G=(V,E) \) be a graph. Then \(S \) is an independent set if and only if its complement \(V-S \) is a vertex cover.

Proof.

\(\Rightarrow \): \(S \) is an independent set.

\(e \) cannot have both endpoints in \(S \) \(\Rightarrow \) \(e \) have an endpoint in \(V-S \).

\(V-S \) is a vertex cover.

\(\Leftarrow \): \(V-S \) is a vertex cover.
Independent set and vertex cover

- **Claim.** Let $G=(V,E)$ be a graph. Then S is an independent set if and only if its complement $V-S$ is a vertex cover.

- **Proof.**

 - \Rightarrow: S is an independent set.

 - e cannot have both endpoints in S \Rightarrow e have an endpoint in $V-S$.

 - $V-S$ is a vertex cover

 - \Leftarrow: $V-S$ is a vertex cover.

 - u and v not part of the vertex cover \Rightarrow no edge between u and v

 - S is an independent set.
Independent set and vertex cover

• **Claim.** Let $G=(V,E)$ be a graph. Then S is an independent set if and only if its complement $V-S$ is a vertex cover.

• Independent set \leq_P vertex cover
 • Use one call to the black box vertex cover algorithm with $k = n-k$.
 • There is an independent set of size $\geq k$ if and only if the vertex cover algorithm returns yes.

• vertex cover \leq_P independent set
 • Use one call to the black box independent set algorithm with $k = n-k$.
Set cover

• Set cover. Given a set U of elements, a collection of sets $S_1, \ldots S_m$ of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?
Set cover

- Set cover. Given a set U of elements, a collection of sets S_1, \ldots, S_m of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?
- Example:
 - Does there exist a set cover of size at most 6?
Set cover

• Set cover. Given a set U of elements, a collection of sets S_1, \ldots, S_m of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?

• Example:
 • Does there exist a set cover of size at most 6? Yes
Set cover

• Set cover. Given a set U of elements, a collection of sets $S_1,…,S_m$ of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?

• Example:
 • Does there exist a set cover of size at most 6? Yes
Set cover

- Set cover. Given a set U of elements, a collection of sets $S_1, \ldots S_m$ of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?

- Example:
 - Does there exist a set cover of size at most 6? Yes
 - Does there exist a set cover of size at most 4?
Set cover

• Set cover. Given a set U of elements, a collection of sets S_1, \ldots, S_m of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?

• Example:
 - Does there exist a set cover of size at most 6? Yes
 - Does there exist a set cover of size at most 4? Yes
Set cover

- Set cover. Given a set U of elements, a collection of sets $S_1,...,S_m$ of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?

- Example:
 - Does there exist a set cover of size at most 6? Yes
 - Does there exist a set cover of size at most 4? Yes
 - Does there exist a set cover of size at most 3? No
Reduction from vertex cover to set cover

- vertex cover \leq_{P} set cover
Reduction from vertex cover to set cover

- vertex cover \leq_P set cover
- $U = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}, e_{12}, e_{13}, e_{14}\}$
- $S_1 = \{e_1, e_2, e_3, e_4\}$
- $S_2 = \{e_1, e_{11}, e_{10}\}$
- $S_3 = \{e_2, e_8\}$
- $S_4 = \{e_3, e_9\}$
- $S_5 = \{e_4, e_5\}$
- $S_6 = \{e_5, e_6, e_7\}$
- $S_7 = \{e_7, e_{13}\}$
- $S_8 = \{e_8, e_9, e_{10}, e_{12}, e_{13}, e_{14}\}$
- $S_9 = \{e_{11}, e_{12}\}$
- $S_{10} = \{e_6, e_{14}\}$
Polynomial-time reductions

- **Reduction.** $X \leq_P Y$ if arbitrary instances of problem X can be solved using:
 - Polynomial number of standard computational steps, plus
 - Polynomial number of calls to oracle that solves problem Y.

- Strategy to make a reduction if we only need one call to the oracle/black box to solve X:
 1. Show how to turn (any) instance S_x of X into an instance of S_y of Y in polynomial time.
 2. Show that: S_x a yes instance of X \implies S_y a yes instance of Y.
 3. Show that: S_y a yes instance to Y \implies S_x a yes instance of X.

- Reductions that needs more than one call to black box:
 1. Show how to turn (any) instance S_x of X into a polynomial number instance of $S_{y,i}$ of Y in polynomial time.
 2. Show: S_x a yes instance of X \implies one of the instances $S_{y,i}$ is a yes instance of Y.
 3. Show: one of the instances $S_{y,i}$ is a yes instance of Y \implies S_x a yes instance of X.

Polynomial-time reductions
P and NP
The class P

- P ~ problems solvable in deterministic polynomial time.
 - Given a problem type X, there is a deterministic algorithm A which for every problem instance $I \in X$ solves I in a time that is polynomial in $|I|$, the size of I.
 - I.e., the running time of A is $O(|I|^k)$ for all $I \in X$, where k is constant independent of the instance I.

- Examples.
 - Closest pair: There is an algorithm A such that for every set S of points, A finds a closest pair in time $O(|S|^2)$.
 - Maximum flow: There is an algorithm A such that for any network, A finds a maximum flow in time $O(|V|^3)$, where V is the set of vertices.
• **Problem [POTATO SOUP].** A recipe calls for B grams of potatoes. You have a K kilo bag with n potatoes. Can one select some of them such that their weight is exactly B grams?

![Diagrams of potatoes weights](image)

• Best known solution: create all 2^n subsets and check each one.
Hard problems

• Many problems share the above features
 • Can be solved in time $2^{|T|}$ (by trying all possibilities.)
 • Given a potential solution, it can be checked in time $O(|I|^k)$, whether it is a solution or not.

• These problems are called **polynomially checkable**.
• A solution can be guessed, and then verified in polynomial time.
The class NP

- **Certifier.** Algorithm \(B(s,t) \) is an **efficient certifier** for problem \(X \) if:
 1. \(B(s,t) \) runs in polynomial time.
 2. For every instance \(s \): \(s \) is a yes instance of \(X \)
 \[\Leftrightarrow \]
 \(there \ exists \ a \ certificate \ t \ of \ length \ polynomial \ in \ s \ and \ B(s,t) \ returns \ yes. \)

- **Example.** Independent set.
 - \(s \): a graph \(G \) and an integer \(k \).
 - \(t \): a set of vertices from \(G \).
 - \(B(s,t) \) returns yes if and only if \(t \) is an independent set of \(G \) and \(|S| \geq k \).
 - This can be checked in polynomial time by checking that no two vertices in \(t \) are neighbors and that the size is at least \(k \).

- A problem \(X \) is in the class **NP** (Non-deterministic Polynomial time) if \(X \) has an efficient certifier.
Optimization vs decision problems

• Consider decision problems (yes-no-problems).

• Example.
 • **[POTATO SOUP]**. A recipe calls for B grams of potatoes. You have a K kilo bag with n potatoes. Can one select some of them such that their weight is exactly B grams?

• Optimization vs decision problem
 • **[OPTIMIZATION LONGEST PATH]** Given a graph G. What is the length of the longest simple path?
 • **[DECISION LONGEST PATH]** Given a graph G and integer k. Is there a simple path of length $\geq k$?

• **Exercise.** Show that OPTIMIZATION LONGEST PATH can be solved in polynomial time if and only if DECISION LONGEST PATH can be solved in polynomial time.
P vs NP

• P solvable in deterministic polynomial time.
• NP solvable in non-deterministic polynomial time/ has an efficient (polynomial time) certifier.
• $P \subseteq NP$ (every problem T which is in P is also in NP).
• It is not known (but strongly believed) whether the inclusion is proper, that is whether there is a problem in NP which is not in P.
• There is subclass of NP which contains the hardest problems, NP-complete problems:
 • X is NP-Complete if
 • $X \in NP$
 • $Y \leq_P X$ for all $Y \in NP$
Examples of NP-complete problems

- Preparing potato soup
- Packing your suitcase
- Satisfiability of clauses
- Partition
- Subset-sum
- Hamilton Cycle
- Travelling Salesman
- Bin Packing
- Knapsack
- Clique
- Independent Set
- Vertex Cover
- Set Cover
NP-complete problems

• [SOCCER CHAMPIONSHIP 3-POINT RULE] In a football league n teams compete for the championship. The leagues uses the 3-point rule, i.e., the points of match are distributed as 3:0, 1:1, or 0:3.

 • Input. The table with the points of every team at some point in the season, a list of the matches to be played in that season and the name of some team.

 • Output.
 • YES if the named team still can become champion
 • NO otherwise.
NP-complete problems

• **[SATISFIABILITY]**
 • **Input:** A set of clauses \(C = \{c_1, \ldots, c_k\} \) over \(n \) boolean variables \(x_1, \ldots, x_n \).
 • **Output:**
 • **YES** if there is a satisfying assignment, i.e., if there is an assignment \(a: \{x_1, \ldots, x_n\} \rightarrow \{0,1\} \) such that every clause is satisfied,
 • **NO** otherwise.

\[
(\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (\overline{x}_1 \lor x_3 \lor \overline{x}_4)
\]

instance \(s \)

\[
x_1 = 1, \ x_2 = 1, \ x_3 = 0, \ x_4 = 1
\]

proposed solution/certificate \(t \)
NP-complete problems

• [HAMILTONIAN CYCLE].
 • **Input:** Undirected graph G
 • **Output:**
 • YES if there exists a simple cycle that visits every node
 • NO otherwise

instance s
certificate t
• Traveling Salesperson Problem (TSP): Given a set of n cities and a pairwise distance function \(d(u, v) \), is there a tour of length \(\leq D \)?

All 13,509 cities in US with a population of at least 500
Reference: http://www.tsp.gatech.edu
• Traveling Salesperson Problem TSP: Given a set of n cities and a pairwise distance function \(d(u, v)\), is there a tour of length \(\leq D\)?

Optimal TSP tour
Reference: http://www.tsp.gatech.edu
How to prove a problem is NP-complete

1. Prove $Y \in$ NP (that it can be verified in polynomial time).

2. Select a known NP-complete problem X.

3. Give a polynomial time reduction from X to Y (prove $X \leq_P Y$):
 - Explain how to turn an instance of X into one or more instances of Y
 - Explain how to use a polynomial number of calls to the black box algorithm/oracle for Y to solve X.
 - Prove/argue that the reduction is correct.
Reduction example

• [HAMILTONIAN CYCLE]. Given a undirected graph G=(V,E), does there exists a simple cycle that visits every node?

• [TRAVELLING SALESMAN (TSP)] Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length ≤ D?

• Show Hamiltonian Cycle \(\leq_p \) TSP:
 - Idea: For every instance of Hamiltonian Cycle create an instance of TSP such that the TSP instance has tour of length ≤ n if and only if G has a Hamiltonian cycle.

• Reduction.
 - Given instance G=(V,E) of Hamiltonian Cycle, create n cities with distance function
 \[
d(u, v) = \begin{cases}
1 & \text{if } (u, v) \in E \\
2 & \text{if } (u, v) \notin E
\end{cases}
\]
 - TSP instance has tour of length ≤ n if and only if G has a Hamiltonian cycle.
Reduction example

• [GLASSES IN A CUPBOARD]. You have \(n \) glasses of equal height. If glass \(g_j \) is put into glass \(g_i \) let \(d_{ij} \) be the amount of \(g_j \) above the rim of \(g_i \). You want to stack them into a single stack, so they fit into a cupboard of height \(h \); is that possible?

• Glasses in a Cupboard in NP: Proposed solution can be verified in polynomial time.

• NP-completeness:
 • Reduction from Directed Hamiltonian Path (DHP).
 • Directed Hamiltonian Path: Given a directed graph \(G \), is there a directed simple path visiting all vertices.
 • DHP is NP-complete
 • Reduction: For every instance (graph) of DHP make a set of glasses and a cupboard, such that the glasses can be stacked into the cupboard if and only if the graph has a Hamiltonian path.
 Reduction example

• Let $G = (E, V)$ a directed graph.
 • Make one glass for every node $i \in V$.
 • If $(i, j) \in E$ ensure:
 • Glass i is red, glass j is yellow.
 • If $(i, j) \notin E$ ensure:
 • Glass i is red, glass j is yellow.
 • Height of the cupboard is $|V| - 1 + \text{height of glass}$
Reduction Example
Reduction Example
The Main Question: P Versus NP

• Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
 • Is the decision problem as easy as the certification problem?
 • Clay $1 million prize.

• Consensus opinion on P = NP? Probably no.