Dynamic Programming

Algorithm Design 6.1, 6.2, 6.3
Applications

• In class (today and next time)
Applications

- In class (today and next time)
 - Weighted interval scheduling
 - Set of weighted intervals with start and finishing times
 - Goal: find maximum weight subset of non-overlapping intervals
Applications

• In class (today and next time)
 • Weighted interval scheduling
 • Segmented least squares
 • Given n points in the plane find a small sequence of lines that minimizes the squared error.
Applications

- In class (today and next time)
 - Weighted interval scheduling
 - Segmented least squares
 - Sequence alignment
 - Given two strings A and B how many edits (insertions, deletions, relabelings) is needed to turn A into B?

A C A A G T C
- C A T G T -

1 mismatch, 2 gaps

A C A A - G T C
- C A - T G T -

0 mismatches, 4 gaps
Applications

• In class (today and next time)
 • Weighted interval scheduling
 • Segmented least squares
 • Sequence alignment

• Shortest paths with negative weights
 • Given a weighted graph, where edge weights can be negative, find the shortest path between two given vertices.
Applications

• In class (today and next time)
 • Weighted interval scheduling
 • Segmented least squares
 • Sequence alignment
 • Shortest paths with negative weights

• Some other famous applications
 • Unix diff for comparing 2 files
 • Vovke-Kasami-Younger for parsing context-free grammars
 • Viterbi for hidden Markov models
 •
Dynamic Programming

- **Greedy.** Build solution incrementally, optimizing some local criterion.

- **Divide-and-conquer.** Break up problem into independent subproblems, solve each subproblem, and combine to get solution to original problem.

- **Dynamic programming.** Break up problem into overlapping subproblems, and build up solutions to larger and larger subproblems.
 - Can be used when the problem have “optimal substructure”:
 - Solution can be constructed from optimal solutions to subproblems
 - Use dynamic programming when subproblems overlap.
Weighted Interval Scheduling
Weighted interval scheduling

- Weighted interval scheduling problem
 - n jobs (intervals)
 - Job i starts at s_i, finishes at f_i and has weight/value v_i.
 - Goal: Find maximum weight subset of non-overlapping (compatible) jobs.
Weighted interval scheduling

- Weighted interval scheduling problem
 - n jobs (intervals)
 - Job i starts at s_i, finishes at f_i and has weight/value v_i.
 - Goal: Find maximum weight subset of non-overlapping (compatible) jobs.
Weighted interval scheduling

• Label/sort jobs by finishing time: $f_1 \leq f_2 \leq \ldots \leq f_n$
Weighted interval scheduling

- Label/sort jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \)
- \(p(j) \) = largest index \(i < j \) such that job \(i \) is compatible with \(j \).
- Optimal solution \(OPT \):
 - **Case 1.** OPT selects last job
 \[
 OPT = v_n + \text{optimal solution to subproblem on } 1, \ldots, p(n)
 \]
 - **Case 2.** OPT does not select last job
 \[
 OPT = \text{optimal solution to subproblem on } 1, \ldots, n-1
 \]
Weighted interval scheduling

• OPT(j) = value of optimal solution to the problem consisting job requests 1,2,...,j.

• **Case 1.** OPT(j) selects job j
 \[OPT(j) = v_j + \text{optimal solution to subproblem on } 1,...,p(j) \]

• **Case 2.** OPT(j) does not job j
 \[OPT = \text{optimal solution to subproblem } 1,...,j-1 \]

• Recursion:

 \[
 OPT(j) = \begin{cases}
 0 & \text{if } j = 0 \\
 \max \{v_j + OPT(p(j)), OPT(j - 1)\} & \text{otherwise}
 \end{cases}
 \]
Weighted interval scheduling: brute force

\[OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max\{v_j + OPT(p(j)), OPT(j - 1)\} & \text{otherwise}
\end{cases} \]

Input: \(n, s[1..n], f[1..n], v[1..n] \)

Sort jobs by finish time so that \(f[1] \leq f[2] \leq \ldots \leq f[n] \)

Compute \(p[1], p[2], \ldots, p[n] \)

Compute-BruteForce-Opt(\(n \))

Compute-Brute-Force-Opt(\(j \))

if \(j = 0 \)

\text{return } 0

else

\text{return } \max\{v_j + \text{Compute-Brute-Force-Opt}(p[j]), \text{Compute-Brute-Force-Opt}(j-1)\}

- Time \(\Theta(2^n) \)

Avoid recomputation?
Weighted interval scheduling: memoization

Input: n, s[1..n], f[1..n], v[1..n]

Sort jobs by finish time so that f[1] ≤ f[2] ≤ ... ≤ f[n]
Compute p[1], p[2], ..., p[n]

for j = 1 to n
 M[j] = null
M[0] = 0.
Compute-Memoized-Opt(n)

Compute-Memoized-Opt(j)
if M[j] is empty
return M[j]

• Running time O(n log n):
 • Sorting takes O(n log n) time.
 • Computing p(n): O(n log n) - use log n time to find each p(i).
 • Each subproblem solved once.
 • Time to solve a subproblem constant.

• Space O(n)
Weighted interval scheduling: memoization

Input: n, s[1..n], f[1..n], v[1..n]

Sort jobs by finish time so that f[1] ≤ f[2] ≤ ... ≤ f[n]

Compute p[1], p[2], ..., p[n]

for j=1 to n
 M[j] = empty
M[0] = 0.

Compute-Memoized-Opt(n)

Compute-Memoized-Opt(j)

if M[j] is empty

return M[j]
Weighted interval scheduling: memoization

Input: \(n, s[1..n], f[1..n], v[1..n] \)

Sort jobs by finish time so that \(f[1] \leq f[2] \leq \ldots \leq f[n] \)

Compute \(p[1], p[2], \ldots, p[n] \)

for \(j=1 \) to \(n \)
 \(M[j] = \) empty
 \(M[0] = 0. \)

Compute-Memoized-Opt \((n) \)

Compute-Memoized-Opt \((j) \)

if \(M[j] \) is empty
 \(M[j] = \) max \((v[j] + \) Compute-Memoized-Opt \((p[j]), \) Compute-Memoized-Opt \((j-1)) \)

return \(M[j] \)

\[
\begin{array}{cccccccccc}
\hline
j & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
s & 4 & 1 & 2 & 7 & 10 & 5 & 6 & 4 \\
\hline
f & 10 & 5 & 10 & 6 & 5 & 2 & 3 & 5 \\
\hline
v & 4 & 1 & 2 & 7 & 10 & 5 & 6 & 4 \\
\hline
p & 0 & 0 & 0 & 1 & 0 & 2 & 3 & 5 \\
\hline
M & 0 & 4 & 4 & 11 & 11 & 11 & 11 & 15 \\
\hline
\end{array}
\]
Weighted interval scheduling: bottom-up

Compute-Bottom-Up-Opt(n, s[1..n], f[1..n], v[1..n])

Sort jobs by finish time so that f[1] ≤ f[2] ≤ ... ≤ f[n]
Compute p[1], p[2], ..., p[n]

M[0] = 0.
for j=1 to n
 M[j] = max(v[j] + M(p[j]), M(j-1))
return M[n]

• Running time O(n log n):
 • Sorting takes O(n log n) time.
 • Computing p(n): O(n log n)
 • For loop: O(n) time
 • Each iteration takes constant time.
• Space O(n)
Weighted interval scheduling: bottom-up

Compute-Bottom-Up-Opt(n, s[1..n], f[1..n], v[1..n])

Sort jobs by finish time so that \(f[1] \leq f[2] \leq \ldots \leq f[n] \)

Compute \(p[1], p[2], \ldots, p[n] \)

\(M[0] = 0. \)

for \(j=1 \) to \(n \)

\(M[j] = \max(v[j] + M(p[j]), M(j-1)) \)

return \(M[n] \)

![Diagram of weighted interval scheduling]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(M[i])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

- \(p(1) = 0 \)
- \(p(2) = 0 \)
- \(p(3) = 0 \)
- \(p(4) = 1 \)
- \(p(5) = 0 \)
- \(p(6) = 2 \)
- \(p(7) = 3 \)
- \(p(8) = 5 \)
Weighted interval scheduling: bottom-up

\[\text{Compute-Bottom-Up-Opt}(n, s[1..n], f[1..n], v[1..n])\]

Sort jobs by finish time so that \(f[1] \leq f[2] \leq \ldots \leq f[n]\)

Compute \(p[1], p[2], \ldots, p[n]\)

\(M[0] = 0.\)

for \(j=1\) to \(n\)

\[M[j] = \max(v[j] + M(p[j]), M(j-1))\]

return \(M[n]\)

\[
\begin{array}{c|c|c}
\text{i} & \text{M[i]} \\
\hline
0 & 0 \\
1 & 4 \\
2 & 4 \\
3 & 4 \\
4 & 11 \\
5 & 11 \\
6 & 11 \\
7 & 11 \\
8 & 15 \\
\end{array}
\]
Weighted interval scheduling: bottom-up

Find-Solution(j)
if j=0
 return emptyset
else if M[j] > M[j-1]
 return \{j\} U Find-Solution(p[j])
else
 return Find-Solution(j-1)

<table>
<thead>
<tr>
<th>i</th>
<th>M[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
</tr>
</tbody>
</table>

- j_1: 4
- j_2: 1
- j_3: 2
- j_4: 7
- j_5: 10
- j_6: 5
- j_7: 6
- j_8: 4

$p(1) = 0$
p(2) = 0
$p(3) = 0$
p(4) = 1
$p(5) = 0$
p(6) = 2
$p(7) = 3$
p(8) = 5
Find-Solution(j)
if j=0
 Return emptyset
else if M[j] > M[j-1]
 return \{j\} \cup \text{Find-Solution}(p[j])
else
 return Find-Solution(j-1)

Solution = 8, 4, 1
Segmented Least Squares
Least squares

- Least squares.
 - Given n points in the plane: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.
 - Find a line $y = ax + b$ that minimizes the sum of the squared error:

$$SSE = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

- Solution. Calculus \Rightarrow minimum error is achieved when

$$a = \frac{n \sum_i x_i y_i - (\sum_i x_i)(\sum_i y_i)}{n \sum_i x_i^2 - (\sum_i x_i)^2}, \quad b = \frac{\sum_i y_i - a \sum_i x_i}{n}$$
Segmented least squares

- Segmented least squares
 - Points lie roughly on a sequence of line segments.
 - Given n points in the plane $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.
 - Find a sequence of lines that minimizes some function $f(x)$.
- What is a good choice for $f(x)$ that balance accuracy and number of lines?
Segmented least squares

- **Segmented least squares.** Given \(n \) points in the plane \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\) and a constant \(c > 0 \) find a sequence of lines that minimizes \(f(x) = E + cL \):
 - \(E \) = sum of sums of the squared errors in each segment.
 - \(L \) = number of lines
Dynamic programming: multiway choice

- OPT(j) = minimum cost for points \(p_1, p_2, \ldots, p_j \).
- \(e(i,j) \) = minimum sum of squares for points \(p_i, p_{i+1}, \ldots, p_j \).
- To compute OPT(j):
 - Last segment uses points \(p_i, p_{i+1}, \ldots, p_j \) for some \(i \).
 - Cost = \(e(i,j) + c + OPT(i-1) \).

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\min_{1 \leq i \leq j} \{e(i,j) + c + OPT(i-1)\} & \text{otherwise}
\end{cases}
\]
Segmented least squares algorithm

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\min_{1 \leq i \leq j} \{e(i, j) + c + OPT(i - 1)\} & \text{otherwise}
\end{cases}
\]

Segmented-least-squares(n, p₁, p₂, ..., pₙ, c)

1. for \(j=1\) to \(n\)
 - for \(i=1\) to \(j\)
 - Compute the least squares \(e(i, j)\) for the segment \(pᵢ, pᵢ₊₁, ..., pⱼ\).

2. \(M[0] = 0\).
3. for \(j=1\) to \(n\)
 - \(M[j] = \infty\)
 - for \(i=1\) to \(j\)
 - \(M[j] = \min(M[j], e(i, j) + c + M[i-1])\)

Return \(M[n]\)
Subproblem dag

Diagram showing a directed acyclic graph (DAG) with nodes labeled n, n-1, n-2, n-3, and 1. The graph contains directed edges connecting these nodes in a specific pattern.
Segmented least squares algorithm

• Time.
 • $O(n^3)$ for computing $e(i,j)$ for $O(n^2)$ pairs ($O(n)$ per pair).
 • $O(n^2)$ for computing M.
 • Total $O(n^3)$

• Space
 • $O(n^2)$.

Segmented-least-squares(n, p_1, p_2, ..., p_n, c)

for $j=1$ to n
 for $i=1$ to j
 Compute the least squares $e(i,j)$ for the segment p_i, p_{i+1}, ..., p_j.

$M[0] = 0$.
for $j=1$ to n
 $M[j] = \infty$
 for $i=1$ to j
 $M[j] = \min(M[j], e(i,j) + c + M[i-1])$

Return $M[n]$