Randomized Algorithms



Randomized algorithms

- Today
- Basic randomized algorithms
- Expectation of random variables
- Guessing cards
- Selection
- Quicksort

<o
>%¢ ¢
>><¢ ¢
EYS




Random Variables and Expectation



Probability

* Probability spaces.

- Set of possible outcomes €2.

« Each item i € € has probability Pr[i] > 0 and 2 Pr[i] = 1.
ieQ

- Event E is a subset of €2 and probability of £ is Pr(E) = 2 Pr[i].

i€eE
- The complementary event E is Q — E and Pr(E) = 1 — Pr(E).

- Example. Flip two fair coins.
«Q = {HH,HT, TH, TT}.
« Pr[i] = 1/4 for each outcome 1.

- Event E = "the coins are the same"
-Pr(l_?) = 1/2.




Probability

- Union bound.

- What is the probability that any of event E, ..., E; will happen, i.e., what is
PI‘(EI U E2 U °e U Ek)?

E;

- If events are disjoint, Pr(E; U --- UE,) = Pr(E;) + --- + Pr(E)).
- If events overlap, Pr(E; U --- UE,) < Pr(E;) + --- + Pr(E)).

- In both cases, the union bound holds:

Pr(E,U - UE,) < Pr(E,) + --- + Pr(E,)



Probability

- Independence.

- Events E and F are independent if information about E does not affect outcome of F and vice
versa.

- Same as Pr(EN F) = Pr(E) - Pr(F)



Random variables

- A random variable is an entity that can assume different values.
- The values are selected “randomly”; i.e., the process is governed by a probability distribution.
- Examples: Let X be the random variable “number shown by dice”.
- X can take the values 1, 2, 3, 4, 5, 6.
- If it is a fair dice then the probability that X = 1 is 1/6:
- Pr[X=1] = 1/6.
- Pr[X=2] = 1/6.



Expected values

- Let X be a random variable with values in {xi,...Xn}, where x; are numbers.
- The expected value (expectation) of X is defined as

E[X]= ) x-Pr[X=x]
j=1

- The expectation is the theoretical average.

- Example:

- X =random variable “number shown by dice”
o 1
E[X] = Zj-Pr[ij] =(1+2+3+4+5+6)-€=3.5
j=1



Waiting for a first succes

Coin flips. Coin is heads with probability p and tails with probability 1 — p. How many independent
flips X until first heads?

Probability of X = j? (first succes is in round j)
PriX=jl=(-py"p

Expected value of X:

[X]= ) j-PriX =] JZ,J( pY = -p l_p];]( p)

J=1




Properties of expectation

- If we repeatedly perform independent trials of an experiment, each of which succeeds with
probability p > 0, then the expected number of trials we need to perform until the first succes is

1/p.

- If X is a 0/1 random variable, then E[X] = Pr[X = 1].

- Linearity of expectation: For two random variables X and Y we have

EIX+ Y] =E[X]|+ E[Y]



Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. Can't remember what's been turned over already. Guess a card from full
deck uniformly at random. e ¢

Claim. The expected number of correct guesses is 1. e

X, = 1 if i guess correct and zero otherwise.

X = the correct number of guesses = X, + ... + X,.

E[X] = Pr[X;= 1] = 1/n. e

EX]=EX|+ - +X]=E[X]]+ - +E[X]=1/n+--+1/n=1. [



Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Claim. The expected number of correct guesses is ®(log n).
X. = 1 if i guess correct and zero otherwise.
X = the correct number of guesses = X; + ... + X .
EX]=Pr[X.=1]=1/(n—i+1).
EX]=EX|]]+ - +EX]J=1/n+--+1/24+1/1=H,.

Inn < Hn) <Inn+ 1




Coupon collector

Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons.
Assuming all boxes are equally likely to contain each coupon, how many boxes before you have at
least 1 coupon of each type?

Claim. The expected number of steps is O(nlog n).
Phase j = time between j and j + 1 distinct coupons.

XJ- = number of steps you spend in phase ;.

X = number of steps in total = Xy + X; + --- + X _;.
EIX]] = ni(n - )).

The expected number of steps:

n—1

E[X] =E[,§Xj] =’§E[Xj] =Y nln—j)=n- il/izn-Hn.

J=0 J=0 Jj=0 i=1



Median/Select



Select

Given n numbers S = {ay, ..., a,}.
- Median: number that is in the middle position if in sorted order.
- Select(S,k): Return the kth smallest number in S.
Min(S) = Select(S, 1), Max(S)= Select(S,n), Median = Select(S,n/2).

- Assume the numbers are distinct.

Select (S, k)

Choose a pivot s € S uniformly at random.
For each element e in S:

if e < s put e in S’

if e > s put e in S’’

if |S’| = k-1 then return s

if |S’| 2 k then call Select(S’, k)

if |S’| < k then call Select(S’'’, k - |S'| - 1)



Select: Running time

Select (S, k)
Choose a pivot s € S uniformly at random.

For each element e in S:

if e < s put e in S’

if e > s put e in S’’

if |S’| = k-1 then return s

if |S’| 2 k then call Select(S’, k)

if |S’| < k then call Select(s’’, k - |S’'| - 1)

. Worst case running time: T(n) = cn +c(n — D) +c(n —2) + ... + ¢ = O(n?)

If there is at least an € fraction of elements both larger and smaller than s:

Tn)=cn+ (1 —e)cn+ (1 —e)icn+ ...
=(1+0 -+ (1 —e)?+..)cn
< cnle

Intuition: A fairly large fraction of elements are “well-centered” => random pivot likely to be good.



Select: Analysis

- Central element: > 1/4 of the elements in current S are smaller and > 1/4 are larger.

S| [ |

If pivot central: size of set shrinks by at least a factor 3/4.
- At least half the elements are central = Pr[s is central] = 1/2.

. Phase j: Size of set at most (3/4)/n and at least (3/4)/*n.

- Pivot central = current phase ends.

Expected number of iterations before a central pivot is found = 2.

. X = number of steps taken by algorithm. XJ = number of steps in phase ;.

. Thenx=X0+X1 +X2+ e
- EIX)] = 2cn(3/4Y
- Expected running time:

EIX]=E[) X]= ) E[X]=) 2cn (%)J =2cn ) G)] < 8cn
J J J

J



Quicksort



Quicksort

Given n numbers S = {a,, ..., q,}.
- Assume the numbers are distinct.

Quicksort (S)

if |S| £ 1 return S

else

Choose a pivot s € S uniformly at random.
For each element e in S
if e < s put e in S’

if e > s put e in S’’

L = Quicksort(S’)
R = Quicksort(S’'’)

return the sorted list LoscoR



Quicksort
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Quicksort
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Quicksort
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Recurse!




Quicksort
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Quicksort
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Quicksort: Analysis

. Worst case: Q(n?) comparisons.
- Best case: O(nlogn)

- Enumerate elements such thata; < a, < --- < a,,.

- Indicator random variable for all pairs i < J:

{ 1 if @; and a; are compared by the algorithm
=

0 otherwise

- X total number of comparisons:

n—-1 n
=3 5%
i=1 j=i+1

- Expected number of comparisons:

n—1

n—1 n n
EX1=EL, ), X1 =2, 2, EIX;

i=1 j=i+1 i=1 j=i+1



Quicksort: Analysis

- Compute expected number of comparisons.
. Since Xl-j is an indicator variable: E[Xl-j] = Pr[Xl-j = 1].

a; and a; compared < g, or g; is the first pivot element chosen from Z;; = la;, ..., aj}

+ Pivot chosen independently uniformly at random =

all elements from Zl-j equally likely to be chosen as first pivot from this set.

- We have Pr[X;; = 1] = 2/(j—i+1).

- Thus
n—1 n n—1 n

EIX] = E[X.] = PrX—l—

XI = D, 2, FIX;] ] sz—lﬂ
i=1 j=i+1 i=1 j=i+1 i=1 j=i+1
nlnl+12<n1n2 Z1 _, H<0(1 )

- n- niogn
K P &



