
Competitive Programmer’s Handbook
(modified for Python)

Antti Laaksonen1

Draft November 25, 2024

1This contains parts of "Competitive Programmer’s Handbook". The included
chapters have been modified by Inge Li Gørtz. The C++ code has been changed to
Python, and minor changes have been made in chapter 12. The license of the book
is Creative Commons BY-NC-SA. To get the full version of the original book go here:
https://cses.fi/book/index.php

ii

Contents

I Basic techniques 1

2 Time complexity 3
2.1 Calculation rules . 3
2.2 Complexity classes . 5
2.3 Estimating efficiency . 7
2.4 Maximum subarray sum . 7

3 Sorting 11
3.1 Sorting theory . 11
3.2 Sorting in Python . 15
3.3 Binary search . 16

4 Data structures 21
4.1 Dynamic arrays . 21
4.2 Set structures . 22
4.3 Map structures/Dictionaries . 23
4.4 Other structures . 24

5 Complete search 27
5.1 Generating subsets . 27
5.2 Generating permutations . 29
5.3 Backtracking . 30
5.4 Pruning the search . 31
5.5 Meet in the middle . 34

6 Greedy algorithms 37
6.1 Coin problem . 37
6.2 Scheduling . 38
6.3 Tasks and deadlines . 40
6.4 Minimizing sums . 41
6.5 Data compression . 42

7 Dynamic programming 45
7.1 Coin problem . 45
7.2 Longest increasing subsequence . 50
7.3 Paths in a grid . 51
7.4 Knapsack problems . 52

iii

7.5 Edit distance . 54
7.6 Counting tilings . 55

8 Amortized analysis 57
8.1 Two pointers method . 57
8.2 Nearest smaller elements . 59
8.3 Sliding window minimum . 61

9 Range queries 63
9.1 Static array queries . 63
9.2 Binary indexed tree . 66
9.3 Segment tree . 68
9.4 Additional techniques . 73

11 Basics of graphs 75
11.1 Graph terminology . 75
11.2 Graph representation . 79

12 Graph traversal 83
12.1 Depth-first search . 83
12.2 Breadth-first search . 85
12.3 Applications . 87

13 Shortest paths 89
13.1 Bellman–Ford algorithm . 89
13.2 Dijkstra’s algorithm . 92
13.3 Floyd–Warshall algorithm . 95

14 Tree algorithms 99
14.1 Tree traversal . 100
14.2 Diameter . 101
14.3 All longest paths . 103
14.4 Binary trees . 105

15 Spanning trees 107
15.1 Kruskal’s algorithm . 108
15.2 Union-find structure . 111
15.3 Prim’s algorithm . 113

16 Directed graphs 117
16.1 Topological sorting . 117
16.2 Dynamic programming . 119
16.3 Successor paths . 122
16.4 Cycle detection . 123

17 Strong connectivity 125
17.1 Kosaraju’s algorithm . 126
17.2 2SAT problem . 128

iv

18 Tree queries 131
18.1 Finding ancestors . 131
18.2 Subtrees and paths . 132
18.3 Lowest common ancestor . 135
18.4 Offline algorithms . 138

Bibliography 141

v

vi

Part I

Basic techniques

1

Chapter 2

Time complexity

The efficiency of algorithms is important in competitive programming. Usually,
it is easy to design an algorithm that solves the problem slowly, but the real
challenge is to invent a fast algorithm. If the algorithm is too slow, it will get only
partial points or no points at all.

The time complexity of an algorithm estimates how much time the algorithm
will use for some input. The idea is to represent the efficiency as a function whose
parameter is the size of the input. By calculating the time complexity, we can
find out whether the algorithm is fast enough without implementing it.

2.1 Calculation rules

The time complexity of an algorithm is denoted O(· · ·) where the three dots
represent some function. Usually, the variable n denotes the input size. For
example, if the input is an array of numbers, n will be the size of the array, and if
the input is a string, n will be the length of the string.

Loops

A common reason why an algorithm is slow is that it contains many loops that go
through the input. The more nested loops the algorithm contains, the slower it is.
If there are k nested loops, the time complexity is O(nk).

For example, the time complexity of the following code is O(n):

for i in range(n):

// code

And the time complexity of the following code is O(n2):

for i in range(n):

for j in range(n):

// code

3

Order of magnitude

A time complexity does not tell us the exact number of times the code inside
a loop is executed, but it only shows the order of magnitude. In the following
examples, the code inside the loop is executed 3n, n+5 and ⌈n/2⌉ times, but the
time complexity of each code is O(n).

for i in range(3*n):

// code

for i in range(n+5):

// code

for i in range(0,n,2):

// code

As another example, the time complexity of the following code is O(n2):

for i in range(n):

for j in range(i+1,n):

// code

Phases

If the algorithm consists of consecutive phases, the total time complexity is the
largest time complexity of a single phase. The reason for this is that the slowest
phase is usually the bottleneck of the code.

For example, the following code consists of three phases with time complexities
O(n), O(n2) and O(n). Thus, the total time complexity is O(n2).

for i in range(n):

// code

for i in range(n):

for j in range(n):

// code

for i in range(n):

// code

Several variables

Sometimes the time complexity depends on several factors. In this case, the time
complexity formula contains several variables.

4

For example, the time complexity of the following code is O(nm):

for i in range(n):

for j in range(m):

// code

Recursion

The time complexity of a recursive function depends on the number of times
the function is called and the time complexity of a single call. The total time
complexity is the product of these values.

For example, consider the following function:

def f(n):

if (n == 1):

return

f(n-1)

The call f(n) causes n function calls, and the time complexity of each call is O(1).
Thus, the total time complexity is O(n).

As another example, consider the following function:

def g(n):

if (n == 1):

return

g(n-1)

g(n-1)

In this case each function call generates two other calls, except for n = 1. Let us
see what happens when g is called with parameter n. The following table shows
the function calls produced by this single call:

function call number of calls
g(n) 1

g(n−1) 2
g(n−2) 4

· · · · · ·
g(1) 2n−1

Based on this, the time complexity is

1+2+4+·· ·+2n−1 = 2n −1=O(2n).

2.2 Complexity classes

The following list contains common time complexities of algorithms:

5

O(1) The running time of a constant-time algorithm does not depend on the
input size. A typical constant-time algorithm is a direct formula that
calculates the answer.

O(logn) A logarithmic algorithm often halves the input size at each step. The
running time of such an algorithm is logarithmic, because log2 n equals the
number of times n must be divided by 2 to get 1.

O(
p

n) A square root algorithm is slower than O(logn) but faster than O(n).
A special property of square roots is that

p
n = n/

p
n, so the square root

p
n

lies, in some sense, in the middle of the input.

O(n) A linear algorithm goes through the input a constant number of times. This
is often the best possible time complexity, because it is usually necessary to
access each input element at least once before reporting the answer.

O(n logn) This time complexity often indicates that the algorithm sorts the input,
because the time complexity of efficient sorting algorithms is O(n logn).
Another possibility is that the algorithm uses a data structure where each
operation takes O(logn) time.

O(n2) A quadratic algorithm often contains two nested loops. It is possible to
go through all pairs of the input elements in O(n2) time.

O(n3) A cubic algorithm often contains three nested loops. It is possible to go
through all triplets of the input elements in O(n3) time.

O(2n) This time complexity often indicates that the algorithm iterates through
all subsets of the input elements. For example, the subsets of {1,2,3} are ;,
{1}, {2}, {3}, {1,2}, {1,3}, {2,3} and {1,2,3}.

O(n!) This time complexity often indicates that the algorithm iterates through
all permutations of the input elements. For example, the permutations of
{1,2,3} are (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2) and (3,2,1).

An algorithm is polynomial if its time complexity is at most O(nk) where k is
a constant. All the above time complexities except O(2n) and O(n!) are polynomial.
In practice, the constant k is usually small, and therefore a polynomial time
complexity roughly means that the algorithm is efficient.

Most algorithms in this book are polynomial. Still, there are many important
problems for which no polynomial algorithm is known, i.e., nobody knows how to
solve them efficiently. NP-hard problems are an important set of problems, for
which no polynomial algorithm is known1.

1A classic book on the topic is M. R. Garey’s and D. S. Johnson’s Computers and Intractability:
A Guide to the Theory of NP-Completeness [16].

6

2.3 Estimating efficiency

By calculating the time complexity of an algorithm, it is possible to check, before
implementing the algorithm, that it is efficient enough for the problem. The
starting point for estimations is the fact that a modern computer can perform
some hundreds of millions of operations in a second.

For example, assume that the time limit for a problem is one second and the
input size is n = 105. If the time complexity is O(n2), the algorithm will perform
about (105)2 = 1010 operations. This should take at least some tens of seconds, so
the algorithm seems to be too slow for solving the problem.

On the other hand, given the input size, we can try to guess the required time
complexity of the algorithm that solves the problem. The following table contains
some useful estimates assuming a time limit of one second.

input size required time complexity
n ≤ 10 O(n!)
n ≤ 20 O(2n)
n ≤ 500 O(n3)
n ≤ 5000 O(n2)
n ≤ 106 O(n logn) or O(n)
n is large O(1) or O(logn)

For example, if the input size is n = 105, it is probably expected that the
time complexity of the algorithm is O(n) or O(n logn). This information makes it
easier to design the algorithm, because it rules out approaches that would yield
an algorithm with a worse time complexity.

Still, it is important to remember that a time complexity is only an estimate
of efficiency, because it hides the constant factors. For example, an algorithm
that runs in O(n) time may perform n/2 or 5n operations. This has an important
effect on the actual running time of the algorithm.

2.4 Maximum subarray sum

There are often several possible algorithms for solving a problem such that their
time complexities are different. This section discusses a classic problem that has
a straightforward O(n3) solution. However, by designing a better algorithm, it is
possible to solve the problem in O(n2) time and even in O(n) time.

Given an array of n numbers, our task is to calculate the maximum subarray
sum, i.e., the largest possible sum of a sequence of consecutive values in the
array2. The problem is interesting when there may be negative values in the
array. For example, in the array

−1 2 4 −3 5 2 −5 2

2J. Bentley’s book Programming Pearls [5] made the problem popular.

7

the following subarray produces the maximum sum 10:

−1 2 4 −3 5 2 −5 2

We assume that an empty subarray is allowed, so the maximum subarray
sum is always at least 0.

Algorithm 1

A straightforward way to solve the problem is to go through all possible subarrays,
calculate the sum of values in each subarray and maintain the maximum sum.
The following code implements this algorithm:

best = 0

for a in range(n):

for b in range(a,n):

sum = 0

for k in range(a, b+1):

sum += array[k]

best = max(best,sum)

print(best)

The variables a and b fix the first and last index of the subarray, and the
sum of values is calculated to the variable sum. The variable best contains the
maximum sum found during the search.

The time complexity of the algorithm is O(n3), because it consists of three
nested loops that go through the input.

Algorithm 2

It is easy to make Algorithm 1 more efficient by removing one loop from it. This
is possible by calculating the sum at the same time when the right end of the
subarray moves. The result is the following code:

best = 0

for a in range(n):

sum = 0

for b in range(a,n):

sum += array[b]

best = max(best,sum)

print(best)

After this change, the time complexity is O(n2).

8

Algorithm 3

Surprisingly, it is possible to solve the problem in O(n) time3, which means that
just one loop is enough. The idea is to calculate, for each array position, the
maximum sum of a subarray that ends at that position. After this, the answer
for the problem is the maximum of those sums.

Consider the subproblem of finding the maximum-sum subarray that ends at
position k. There are two possibilities:

1. The subarray only contains the element at position k.

2. The subarray consists of a subarray that ends at position k−1, followed by
the element at position k.

In the latter case, since we want to find a subarray with maximum sum, the
subarray that ends at position k−1 should also have the maximum sum. Thus,
we can solve the problem efficiently by calculating the maximum subarray sum
for each ending position from left to right.

The following code implements the algorithm:

best = 0

sum = 0

for k in range(n):

sum = max(array[k],sum+array[k])

best = max(best,sum)

print(best)

The algorithm only contains one loop that goes through the input, so the time
complexity is O(n). This is also the best possible time complexity, because any
algorithm for the problem has to examine all array elements at least once.

Efficiency comparison

It is interesting to study how efficient algorithms are in practice. The following
table shows the running times of the above algorithms for different values of n
on a modern computer.

In each test, the input was generated randomly. The time needed for reading
the input was not measured.

array size n Algorithm 1 Algorithm 2 Algorithm 3
102 0.0 s 0.0 s 0.0 s
103 0.1 s 0.0 s 0.0 s
104 > 10.0 s 0.1 s 0.0 s
105 > 10.0 s 5.3 s 0.0 s
106 > 10.0 s > 10.0 s 0.0 s
107 > 10.0 s > 10.0 s 0.0 s

3In [5], this linear-time algorithm is attributed to J. B. Kadane, and the algorithm is sometimes
called Kadane’s algorithm.

9

The comparison shows that all algorithms are efficient when the input size is
small, but larger inputs bring out remarkable differences in the running times
of the algorithms. Algorithm 1 becomes slow when n = 104, and Algorithm 2
becomes slow when n = 105. Only Algorithm 3 is able to process even the largest
inputs instantly.

10

Chapter 3

Sorting

Sorting is a fundamental algorithm design problem. Many efficient algorithms
use sorting as a subroutine, because it is often easier to process data if the
elements are in a sorted order.

For example, the problem ”does an array (list) contain two equal elements?”
is easy to solve using sorting. If the array contains two equal elements, they will
be next to each other after sorting, so it is easy to find them. Also, the problem
”what is the most frequent element in a array?” can be solved similarly.

There are many algorithms for sorting, and they are also good examples of
how to apply different algorithm design techniques. The efficient general sorting
algorithms work in O(n logn) time, and many algorithms that use sorting as a
subroutine also have this time complexity.

3.1 Sorting theory

The basic problem in sorting is as follows:

Given a lilst that contains n elements, your task is to sort the elements in
increasing order.

For example, the array

1 3 8 2 9 2 5 6

will be as follows after sorting:

1 2 2 3 5 6 8 9

O(n2) algorithms

Simple algorithms for sorting a array work in O(n2) time. Such algorithms
are short and usually consist of two nested loops. A famous O(n2) time sorting

11

algorithm is bubble sort where the elements ”bubble” in the array according to
their values.

Bubble sort consists of n rounds. On each round, the algorithm iterates
through the elements of the array. Whenever two consecutive elements are found
that are not in correct order, the algorithm swaps them. The algorithm can be
implemented as follows:

for i in range(n):

for j in range(n-1):

if (L[j] > L[j+1]):

L[j],L[j+1] = L[j+1],L[j]

After the first round of the algorithm, the largest element will be in the correct
position, and in general, after k rounds, the k largest elements will be in the
correct positions. Thus, after n rounds, the whole array will be sorted.

For example, in the array

1 3 8 2 9 2 5 6

the first round of bubble sort swaps elements as follows:

1 3 2 8 9 2 5 6

1 3 2 8 2 9 5 6

1 3 2 8 2 5 9 6

1 3 2 8 2 5 6 9

Inversions

Bubble sort is an example of a sorting algorithm that always swaps consecutive
elements in the array. It turns out that the time complexity of such an algorithm
is always at least O(n2), because in the worst case, O(n2) swaps are required for
sorting the array.

A useful concept when analyzing sorting algorithms is an inversion: a pair
of array elements (array[a],array[b]) such that a < b and array[a]> array[b], i.e.,
the elements are in the wrong order. For example, the array

1 2 2 6 3 5 9 8

12

has three inversions: (6,3), (6,5) and (9,8). The number of inversions indicates
how much work is needed to sort the array. An array is completely sorted when
there are no inversions. On the other hand, if the array elements are in the
reverse order, the number of inversions is the largest possible:

1+2+·· ·+ (n−1)= n(n−1)
2

=O(n2)

Swapping a pair of consecutive elements that are in the wrong order removes
exactly one inversion from the array. Hence, if a sorting algorithm can only swap
consecutive elements, each swap removes at most one inversion, and the time
complexity of the algorithm is at least O(n2).

O(n logn) algorithms

It is possible to sort an array efficiently in O(n logn) time using algorithms that
are not limited to swapping consecutive elements. One such algorithm is merge
sort1, which is based on recursion.

Merge sort sorts a subarray array[a . . .b] as follows:

1. If a = b, do not do anything, because the subarray is already sorted.

2. Calculate the position of the middle element: k = ⌊(a+b)/2⌋.
3. Recursively sort the subarray array[a . . .k].

4. Recursively sort the subarray array[k+1 . . .b].

5. Merge the sorted subarrays array[a . . .k] and array[k+1 . . .b] into a sorted
subarray array[a . . .b].

Merge sort is an efficient algorithm, because it halves the size of the subarray
at each step. The recursion consists of O(logn) levels, and processing each level
takes O(n) time. Merging the subarrays array[a . . .k] and array[k+1 . . .b] is
possible in linear time, because they are already sorted.

For example, consider sorting the following array:

1 3 6 2 8 2 5 9

The array will be divided into two subarrays as follows:

1 3 6 2 8 2 5 9

Then, the subarrays will be sorted recursively as follows:

1 2 3 6 2 5 8 9

Finally, the algorithm merges the sorted subarrays and creates the final
sorted array:

1 2 2 3 5 6 8 9

1According to [23], merge sort was invented by J. von Neumann in 1945.

13

Sorting lower bound

Is it possible to sort an array faster than in O(n logn) time? It turns out that this
is not possible when we restrict ourselves to sorting algorithms that are based on
comparing array elements.

The lower bound for the time complexity can be proved by considering sorting
as a process where each comparison of two elements gives more information
about the contents of the array. The process creates the following tree:

x < y?

x < y? x < y?

x < y? x < y? x < y? x < y?

Here ”x < y?” means that some elements x and y are compared. If x < y, the
process continues to the left, and otherwise to the right. The results of the process
are the possible ways to sort the array, a total of n! ways. For this reason, the
height of the tree must be at least

log2(n!)= log2(1)+ log2(2)+·· ·+ log2(n).

We get a lower bound for this sum by choosing the last n/2 elements and changing
the value of each element to log2(n/2). This yields an estimate

log2(n!)≥ (n/2) · log2(n/2),

so the height of the tree and the minimum possible number of steps in a sorting
algorithm in the worst case is at least n logn.

Counting sort

The lower bound n logn does not apply to algorithms that do not compare array
elements but use some other information. An example of such an algorithm is
counting sort that sorts an array in O(n) time assuming that every element in
the array is an integer between 0 . . . c and c =O(n).

The algorithm creates a bookkeeping array, whose indices are elements of the
original array. The algorithm iterates through the original array and calculates
how many times each element appears in the array.

14

For example, the array

1 3 6 9 9 3 5 9

corresponds to the following bookkeeping array:

1 0 2 0 1 1 0 0 3

1 2 3 4 5 6 7 8 9

For example, the value at position 3 in the bookkeeping array is 2, because
the element 3 appears 2 times in the original array.

Construction of the bookkeeping array takes O(n) time. After this, the sorted
array can be created in O(n) time because the number of occurrences of each
element can be retrieved from the bookkeeping array. Thus, the total time
complexity of counting sort is O(n).

Counting sort is a very efficient algorithm but it can only be used when the
constant c is small enough, so that the array elements can be used as indices in
the bookkeeping array.

3.2 Sorting in Python

It is almost never a good idea to use a home-made sorting algorithm in a contest,
because there are good implementations available in programming languages.
For example, the Python has a built-in function sort that can be easily used for
sorting arrays and other data structures.

There are many benefits in using a built-in function. First, it saves time
because there is no need to implement the function. Second, the built-in imple-
mentation is certainly correct and efficient: it is not probable that a home-made
sorting function would be better.

In this section we will see how to use the Python sort function. The following
code sorts a vector in increasing order:

L = [4,2,5,3,5,8,3]

L.sort()

After the sorting, the contents of the list will be [2,3,3,4,5,5,8]. The default
sorting order is increasing, but a reverse order is possible as follows:

L.sort(reverse=True);

There is also a function sorted that builds and returns a new sorted list.

L = [4,2,5,3,5,8,3]

S = sorted(L)

The list S now contains the sorted list [2,3,3,4,5,5,8]

15

Comparison operators

The function sort requires that a comparison operator is defined for the data
type of the elements to be sorted. When sorting, this operator will be used
whenever it is necessary to find out the order of two elements.

Most Python data types have a built-in comparison operator, and elements
of those types can be sorted automatically. For example, numbers are sorted
according to their values and strings are sorted in alphabetical order.

Pairs are sorted primarily according to their first elements. However, if the
first elements of two pairs are equal, they are sorted according to their second
elements:

L = [(1,5),(2,3),(1,2)]

L.sort()

After this, the order of the pairs is (1,2), (1,5) and (2,3).
In a similar way, tuples (tuple) are sorted primarily by the first element,

secondarily by the second element, etc.:

L = L[(2,1,4),(1,5,3),(2,1,3)]

L.sort()

After this, the order of the tuples is (1,5,3), (2,1,3) and (2,1,4).
You can also specify which key to sort tuples by. For example:

L = [(’john’, ’A’, 15),(’jane’, ’B’, 12),(’dave’, ’B’, 10)]

L.sort(key=lambda s: s[2])

After this, the order of the tuples is (’dave’, ’B’, 10), (’jane’, ’B’, 12) and (’john’, ’A’,
15).

3.3 Binary search

A general method for searching for an element in an array is to use a for loop
that iterates through the elements of the array. For example, the following code
searches for an element x in an array:

for i in range(n):

if array[i] == x:

x found at index i

The time complexity of this approach is O(n), because in the worst case, it
is necessary to check all elements of the array. If the order of the elements is
arbitrary, this is also the best possible approach, because there is no additional
information available where in the array we should search for the element x.

However, if the array is sorted, the situation is different. In this case it is
possible to perform the search much faster, because the order of the elements in

16

the array guides the search. The following binary search algorithm efficiently
searches for an element in a sorted array in O(logn) time.

Method 1

The usual way to implement binary search resembles looking for a word in a
dictionary. The search maintains an active region in the array, which initially
contains all array elements. Then, a number of steps is performed, each of which
halves the size of the region.

At each step, the search checks the middle element of the active region. If
the middle element is the target element, the search terminates. Otherwise, the
search recursively continues to the left or right half of the region, depending on
the value of the middle element.

The above idea can be implemented as follows:

a = 0

b = n-1

while a <= b:

k = (a+b)//2

if array[k] == x:

x found at index k

else:

a = k+1

In this implementation, the active region is a . . .b, and initially the region is
0 . . .n−1. The algorithm halves the size of the region at each step, so the time
complexity is O(logn).

Method 2

An alternative method to implement binary search is based on an efficient way to
iterate through the elements of the array. The idea is to make jumps and slow
the speed when we get closer to the target element.

The search goes through the array from left to right, and the initial jump
length is n/2. At each step, the jump length will be halved: first n/4, then n/8,
n/16, etc., until finally the length is 1. After the jumps, either the target element
has been found or we know that it does not appear in the array.

The following code implements the above idea:

k = 0

b = n//2

while b >= 1:

while (k+b < n and array[k+b] <= x):

k += b

b //= 2

if array[k] == x:

x found at index k

17

During the search, the variable b contains the current jump length. The
time complexity of the algorithm is O(logn), because the code in the while loop is
performed at most twice for each jump length.

Python functions

The python module bisect contains the following functions that are based on
binary search and work in logarithmic time:

• bisect.bisect_left(array, x) returns a pointer to the first array element
whose value is at least x.

• ubisect.bisect_right(array, x) returns a pointer to the first array ele-
ment whose value is larger than x.

The functions assume that the array is sorted. If there is no such element,
the pointer points to the element after the last array element. For example, the
following code finds out whether an array contains an element with value x:

k = bisect.bisect_left(array,x)

if k != len(array) and array[k] == x:

x found at index k

Then, the following code counts the number of elements whose value is x:

a = bisect.bisect_left(array,x)

b = bisect.bisect_right(array,x)

print(b-a)

You can use parameters lo and hi to specify a subset of the list which should
be considered. By default the entire list is used. E.g., bisect.bisect_left(array,
x)= bisect.bisect_left(array, x, lo = 0, hi = len(array)).

Finding the smallest solution

An important use for binary search is to find the position where the value of a
function changes. Suppose that we wish to find the smallest value k that is a
valid solution for a problem. We are given a function ok(x) that returns true if x
is a valid solution and false otherwise. In addition, we know that ok(x) is false

when x < k and true when x ≥ k. The situation looks as follows:

x 0 1 · · · k−1 k k+1 · · ·
ok(x) false false · · · false true true · · ·

Now, the value of k can be found using binary search:

18

x = -1

b = z

while b >= 1:

while (not ok(x+b)):

x += b

b //= 2

k = x+1

The search finds the largest value of x for which ok(x) is false. Thus, the next
value k = x+1 is the smallest possible value for which ok(k) is true. The initial
jump length z has to be large enough, for example some value for which we know
beforehand that ok(z) is true.

The algorithm calls the function ok O(log z) times, so the total time complexity
depends on the function ok. For example, if the function works in O(n) time, the
total time complexity is O(n log z).

Finding the maximum value

Binary search can also be used to find the maximum value for a function that is
first increasing and then decreasing. Our task is to find a position k such that

• f (x)< f (x+1) when x < k, and

• f (x)> f (x+1) when x ≥ k.

The idea is to use binary search for finding the largest value of x for which
f (x)< f (x+1). This implies that k = x+1 because f (x+1)> f (x+2). The following
code implements the search:

x = -1

b = z

while b >= 1:

while (f(x+b) < f(x+b+1)):

x += b

int k = x+1

Note that unlike in the ordinary binary search, here it is not allowed that
consecutive values of the function are equal. In this case it would not be possible
to know how to continue the search.

19

20

Chapter 4

Data structures

A data structure is a way to store data in the memory of a computer. It is
important to choose an appropriate data structure for a problem, because each
data structure has its own advantages and disadvantages. The crucial question
is: which operations are efficient in the chosen data structure?

This chapter introduces the most important data structures in the Python
standard library. It is a good idea to use the standard library whenever possible,
because it will save a lot of time. Later in the book we will learn about more
sophisticated data structures that are not available in the standard library.

4.1 Dynamic arrays

A dynamic array is an array whose size can be changed during the execution of
the program. The most popular dynamic array in Python is the list structure.
The following code creates an empty list and adds three elements to it:

L = []

L.append(3) # [3]

L.append(2) # [3,2]

L.append(5) # [3,2,5]

After this, the elements can be accessed like this:

print(L[0]) # 3

print(L[1]) # 2

print(L[2]) # 5

The function len returns the number of elements in the list. The following
code iterates through the list and prints all elements in it:

for i in range(len(L)):

print(L[i])

21

A shorter way to iterate through a list is as follows:

for x in L:

print(x)

The function pop returns and removes the last element from the list:

L = []

L.append(5)

L.append(2)

print(L.pop()) # 2

print(L.pop()) # 5

The following code creates a list with five elements:

L = [2,4,2,5,1]

Another way to create a list is to give the number of elements and the initial
value for each element:

// size 10, initial value 0

L = [0]*10

// size 10, initial value 5

L = [5]*10

The time of append and pop is O(1).

Linear time operations The following operations all use O(n) time, so use
them with care!

You can insert at a given position using the function insert(i,x), which
inserts x at postition i. You can remove the first item in the list with value x
using remove(x). You can remove the item at index i using del(i). All these
operations use O(n) time. Beware, that the command "x in L", where L is a list,
uses O(n) time to search the list for the element! (See next section for an efficient
data structure for set membership).

4.2 Set structures

A set is a data structure that maintains a collection of elements with no duplicate
elements. The basic operations of sets are element insertion, search and removal.

The Python standard library contains only an unordered set implementation:
The structure set uses hashing, and its operations work in O(1) time on average.

Curly braces or the set() function can be used to create sets. Note: to create
an empty set you have to use set(), not {}; the latter creates an empty dictionary,
a data structure that we discuss in the next section.

22

The following code creates a set that contains integers, and shows some of the
operations. The function add adds an element to the set and the function remove

removes an element from the set. To check in an element x is in the set s you can
write "x in s". All three operations use O(1) time on average.

s = set()

s.add(3)

s.add(2)

s.add(10);

print(s) # {10,2,3} (order might be different)

print(4 in s) # False

print(3 in s) # True

s.remove(3)

s.add(4)

print(3 in s) # False

print(4 in s) # True

A set can be used mostly like a list, but it is not possible to access the elements
using the [] notation. But where a list uses O(n) time for the in operation a
set only uses O(1) time. The following code creates a set, prints the number of
elements in it, and then iterates through all the elements:

s = {2,5,6,8}

print(len(s)) # 4

for x in s:

print(x)

An important property of sets is that all their elements are distinct. Thus,
the function insert never adds an element to the set if it is already there. The
following code illustrates this:

s = set()

s.add(5)

s.add(5)

s.add(5)

print(s) # {5}

4.3 Map structures/Dictionaries

A map or dictionary is a data structure that consists of key-value-pairs. Dictio-
naries are indexed by keys, which can be of many different types. Strings and
numbers can be keys. Tuples can be used as keys if they contain only strings,
numbers, or tuples of strings and numbers.

You can think of a dictionary as a set of key: value pairs, with the requirement
that the keys are unique (within one dictionary).

The Python standard library contains a map implementation that correspond

23

to the set implementation: the structure dict uses hashing and accessing ele-
ments takes O(1) time on average.

A pair of braces creates an empty dictionary: {}. Placing a comma-separated
list of key:value pairs within the braces adds initial key:value pairs to the dictio-
nary; this is also the way dictionaries are written on output.1

The following code creates a dictionary where the keys are strings and the
values are integers:

d = {}

d["monkey"] = 4

d["banana"] = 3

d["harpsichord"] = 10

print(d["banana"]) # 3

You can check if a key k is in the dictionary d by writing "k in d":

if ("aybabtu" in d):

key exists

You can delete a key:value pair with del. If you store using a key that is already
in use, the old value associated with that key is forgotten.

You can print all the keys and values in a dictionary d by writing print(d).
Writing list(d) returns a list of all the keys used in the dictionary d, in insertion
order.

4.4 Other structures

Stack

A stack is a data structure that provides two O(1) time operations: adding an
element to the top, and removing an element from the top. It is only possible to
access the top element of a stack.

In Python you can use a list to implement a stack. The following code shows
how a stack can be used:

s = []

s.append(3)

s.append(2)

s.append(5)

print(s) # [3,2,5]

print(s.pop()) # 5

print(s) # [3,2]

1from python.org.

24

Deque

A deque is a dynamic array whose size can be efficiently changed at both ends
of the array. To implement a deque, use the module collections.deque which
was designed to have fast appends and pops from both ends. Like a list, a
deque provides the functions append and pop(), but it also includes the functions
appendleft and popleft which are not available in a list. All the operations takes
O(1) time.

A deque can be used as follows:

from collections import deque

d = deque()

d.append(5) # [5]

d.append(2) # [5,2]

d.appendleft(3) # [3,5,2]

d.pop() # [3,5]

d.popleft() # [5]

Queue

A queue provides two O(1) time operations: adding an element to the end of the
queue, and removing the first element in the queue. It is only possible to access
the first and last element of a queue.

The following code shows how a queue can be used:

from collections import deque

q = deque()

q.append(3)

q.append(2)

q.append(5)

print(q.popleft()) #3

print(q.popleft()) # 2

Priority queue

A priority queue maintains a set of elements. The supported operations are
insertion and, depending on the type of the queue, removal of either the minimum
or maximum element. Insertion and removal take O(logn) time. A priority queue
is usually implemented using a heap structure.

By default, the elements in a Python priority queue are sorted in increasing
order, and it is possible to find and remove the smallest element in the queue.
The following code illustrates this:

25

import heapq

q = []

heapq.heappush(q,3)

heapq.heappush(q,5)

heapq.heappush(q,7)

heapq.heappush(q,2)

print(heapq.heappop(q)) # 2

print(heapq.heappop(q)) # 3

heapq.heappush(q,1)

print(heapq.heappop()) # 1

You can turn an existing list L into a heap in linear time by using heapq.heapify(L).

26

Chapter 5

Complete search

Complete search is a general method that can be used to solve almost any
algorithm problem. The idea is to generate all possible solutions to the problem
using brute force, and then select the best solution or count the number of
solutions, depending on the problem.

Complete search is a good technique if there is enough time to go through
all the solutions, because the search is usually easy to implement and it always
gives the correct answer. If complete search is too slow, other techniques, such as
greedy algorithms or dynamic programming, may be needed.

5.1 Generating subsets

We first consider the problem of generating all subsets of a set of n elements. For
example, the subsets of {0,1,2} are ;, {0}, {1}, {2}, {0,1}, {0,2}, {1,2} and {0,1,2}.
There are two common methods to generate subsets: we can either perform a
recursive search or exploit the bit representation of integers.

Method 1

An elegant way to go through all subsets of a set is to use recursion. The
following function search generates the subsets of the set {0,1, . . . ,n−1}. The
function maintains a list subset that will contain the elements of each subset.
The search begins when the function is called with parameter 0.

subset = []

def search(k):

if (k == n):

process subset

else:

search(k+1)

subset.append(k)

search(k+1)

subset.pop()

27

When the function search is called with parameter k, it decides whether to
include the element k in the subset or not, and in both cases, then calls itself
with parameter k+1 However, if k = n, the function notices that all elements
have been processed and a subset has been generated.

The following tree illustrates the function calls when n = 3. We can always
choose either the left branch (k is not included in the subset) or the right branch
(k is included in the subset).

search(0)

search(1) search(1)

search(2) search(2) search(2) search(2)

search(3) search(3) search(3) search(3) search(3) search(3) search(3) search(3)

; {2} {1} {1,2} {0} {0,2} {0,1} {0,1,2}

Method 2

Another way to generate subsets is based on the bit representation of integers.
Each subset of a set of n elements can be represented as a sequence of n bits,
which corresponds to an integer between 0 . . .2n −1. The ones in the bit sequence
indicate which elements are included in the subset.

The usual convention is that the last bit corresponds to element 0, the second
last bit corresponds to element 1, and so on. For example, the bit representation
of 25 is 11001, which corresponds to the subset {0,3,4}.

The following code goes through the subsets of a set of n elements

for b in range(1<<n):

process subset

The following code shows how we can find the elements of a subset that
corresponds to a bit sequence. When processing each subset, the code builds a
list that contains the elements in the subset.

for b in range(1<<n):

subset = []

for i in range(n):

if (b&(1<<i)):

subset.append(i)

process subset

28

5.2 Generating permutations

Next we consider the problem of generating all permutations of a set of n elements.
For example, the permutations of {0,1,2} are (0,1,2), (0,2,1), (1,0,2), (1,2,0),
(2,0,1) and (2,1,0). Again, there are two approaches: we can either use recursion
or go through the permutations iteratively.

Method 1

Like subsets, permutations can be generated using recursion. The following
function search goes through the permutations of the set {0,1, . . . ,n−1}. The
function builds a list permutation that contains the permutation, and the search
begins when the function is called without parameters.

permutation = []

chosen = [False]*n

def search():

if (len(permutation) == n):

process permutation

else:

for i in range(n):

if (chosen[i]):

continue

chosen[i] = True

permutation.append(i)

search()

chosen[i] = False

permutation.pop()

Each function call adds a new element to permutation. The array chosen

indicates which elements are already included in the permutation. If the size of
permutation equals the size of the set, a permutation has been generated.

Method 2

Another method for generating permutations is to begin with the permutation
{0,1, . . . ,n−1} and repeatedly use a function that constructs the next permuta-
tion in increasing order. The Python library itertools contains the function
permutation that can be used for this:

from itertools import permutations

L = []

for i in range(n):

L.append(i)

P = permutations(L)

for p in P:

process permutation p

29

5.3 Backtracking

A backtracking algorithm begins with an empty solution and extends the
solution step by step. The search recursively goes through all different ways how
a solution can be constructed.

As an example, consider the problem of calculating the number of ways n
queens can be placed on an n×n chessboard so that no two queens attack each
other. For example, when n = 4, there are two possible solutions:

Q

Q

Q

Q

Q

Q

Q

Q

The problem can be solved using backtracking by placing queens to the board
row by row. More precisely, exactly one queen will be placed on each row so that
no queen attacks any of the queens placed before. A solution has been found
when all n queens have been placed on the board.

For example, when n = 4, some partial solutions generated by the backtrack-
ing algorithm are as follows:

Q Q Q Q

Q Q Q Q

Q Q Q Q

illegal illegal illegal valid

At the bottom level, the three first configurations are illegal, because the
queens attack each other. However, the fourth configuration is valid and it can be
extended to a complete solution by placing two more queens to the board. There
is only one way to place the two remaining queens.

The algorithm can be implemented as follows:

30

count = 0

def search(y):

global count

if (y == n):

count += 1

return

for x in range(n):

if (column[x] or diag1[x+y] or diag2[x-y+n-1]):

continue

column[x] = diag1[x+y] = diag2[x-y+n-1] = True

search(y+1)

column[x] = diag1[x+y] = diag2[x-y+n-1] = False

The search begins by calling search(0). The size of the board is n×n, and the
code calculates the number of solutions to count.

The code assumes that the rows and columns of the board are numbered from
0 to n−1. When the function search is called with parameter y, it places a queen
on row y and then calls itself with parameter y+1. Then, if y= n, a solution has
been found and the variable count is increased by one.

The array column keeps track of columns that contain a queen, and the arrays
diag1 and diag2 keep track of diagonals. It is not allowed to add another queen
to a column or diagonal that already contains a queen. For example, the columns
and diagonals of the 4×4 board are numbered as follows:

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

1 2 3 4

2 3 4 5

3 4 5 6

3 4 5 6

2 3 4 5

1 2 3 4

0 1 2 3

column diag1 diag2

Let q(n) denote the number of ways to place n queens on an n×n chessboard.
The above backtracking algorithm tells us that, for example, q(8) = 92. When
n increases, the search quickly becomes slow, because the number of solutions
increases exponentially. For example, calculating q(16) = 14772512 using the
above algorithm already takes about a minute on a modern computer1.

5.4 Pruning the search

We can often optimize backtracking by pruning the search tree. The idea is to
add ”intelligence” to the algorithm so that it will notice as soon as possible if a

1There is no known way to efficiently calculate larger values of q(n). The current record is
q(27)= 234907967154122528, calculated in 2016 [28].

31

partial solution cannot be extended to a complete solution. Such optimizations
can have a tremendous effect on the efficiency of the search.

Let us consider the problem of calculating the number of paths in an n×n
grid from the upper-left corner to the lower-right corner such that the path visits
each square exactly once. For example, in a 7×7 grid, there are 111712 such
paths. One of the paths is as follows:

We focus on the 7×7 case, because its level of difficulty is appropriate to
our needs. We begin with a straightforward backtracking algorithm, and then
optimize it step by step using observations of how the search can be pruned.
After each optimization, we measure the running time of the algorithm and the
number of recursive calls, so that we clearly see the effect of each optimization
on the efficiency of the search.

Basic algorithm

The first version of the algorithm does not contain any optimizations. We simply
use backtracking to generate all possible paths from the upper-left corner to the
lower-right corner and count the number of such paths.

• running time: 483 seconds

• number of recursive calls: 76 billion

Optimization 1

In any solution, we first move one step down or right. There are always two
paths that are symmetric about the diagonal of the grid after the first step. For
example, the following paths are symmetric:

32

Hence, we can decide that we always first move one step down (or right), and
finally multiply the number of solutions by two.

• running time: 244 seconds

• number of recursive calls: 38 billion

Optimization 2

If the path reaches the lower-right square before it has visited all other squares
of the grid, it is clear that it will not be possible to complete the solution. An
example of this is the following path:

Using this observation, we can terminate the search immediately if we reach the
lower-right square too early.

• running time: 119 seconds

• number of recursive calls: 20 billion

Optimization 3

If the path touches a wall and can turn either left or right, the grid splits into
two parts that contain unvisited squares. For example, in the following situation,
the path can turn either left or right:

In this case, we cannot visit all squares anymore, so we can terminate the search.
This optimization is very useful:

• running time: 1.8 seconds

• number of recursive calls: 221 million

33

Optimization 4

The idea of Optimization 3 can be generalized: if the path cannot continue
forward but can turn either left or right, the grid splits into two parts that both
contain unvisited squares. For example, consider the following path:

It is clear that we cannot visit all squares anymore, so we can terminate the
search. After this optimization, the search is very efficient:

• running time: 0.6 seconds

• number of recursive calls: 69 million

Now is a good moment to stop optimizing the algorithm and see what we have
achieved. The running time of the original algorithm was 483 seconds, and now
after the optimizations, the running time is only 0.6 seconds. Thus, the algorithm
became nearly 1000 times faster after the optimizations.

This is a usual phenomenon in backtracking, because the search tree is usually
large and even simple observations can effectively prune the search. Especially
useful are optimizations that occur during the first steps of the algorithm, i.e., at
the top of the search tree.

5.5 Meet in the middle

Meet in the middle is a technique where the search space is divided into two
parts of about equal size. A separate search is performed for both of the parts,
and finally the results of the searches are combined.

The technique can be used if there is an efficient way to combine the results
of the searches. In such a situation, the two searches may require less time than
one large search. Typically, we can turn a factor of 2n into a factor of 2n/2 using
the meet in the middle technique.

As an example, consider a problem where we are given a list of n numbers
and a number x, and we want to find out if it is possible to choose some numbers
from the list so that their sum is x. For example, given the list [2,4,5,9] and
x = 15, we can choose the numbers [2,4,9] to get 2+4+9= 15. However, if x = 10
for the same list, it is not possible to form the sum.

A simple algorithm to the problem is to go through all subsets of the elements
and check if the sum of any of the subsets is x. The running time of such an

34

algorithm is O(2n), because there are 2n subsets. However, using the meet in the
middle technique, we can achieve a more efficient O(2n/2) time algorithm2. Note
that O(2n) and O(2n/2) are different complexities because 2n/2 equals

p
2n.

The idea is to divide the list into two lists A and B such that both lists contain
about half of the numbers. The first search generates all subsets of A and stores
their sums to a list SA. Correspondingly, the second search creates a list SB from
B. After this, it suffices to check if it is possible to choose one element from SA
and another element from SB such that their sum is x. This is possible exactly
when there is a way to form the sum x using the numbers of the original list.

For example, suppose that the list is [2,4,5,9] and x = 15. First, we divide
the list into A = [2,4] and B = [5,9]. After this, we create lists SA = [0,2,4,6]
and SB = [0,5,9,14]. In this case, the sum x = 15 is possible to form, because SA
contains the sum 6, SB contains the sum 9, and 6+9= 15. This corresponds to
the solution [2,4,9].

We can implement the algorithm so that its time complexity is O(2n/2). First,
we generate sorted lists SA and SB, which can be done in O(2n/2) time using a
merge-like technique. After this, since the lists are sorted, we can check in O(2n/2)
time if the sum x can be created from SA and SB.

2This idea was introduced in 1974 by E. Horowitz and S. Sahni [19].

35

36

Chapter 6

Greedy algorithms

A greedy algorithm constructs a solution to the problem by always making a
choice that looks the best at the moment. A greedy algorithm never takes back
its choices, but directly constructs the final solution. For this reason, greedy
algorithms are usually very efficient.

The difficulty in designing greedy algorithms is to find a greedy strategy that
always produces an optimal solution to the problem. The locally optimal choices
in a greedy algorithm should also be globally optimal. It is often difficult to argue
that a greedy algorithm works.

6.1 Coin problem

As a first example, we consider a problem where we are given a set of coins and
our task is to form a sum of money n using the coins. The values of the coins are
coins= {c1, c2, . . . , ck}, and each coin can be used as many times we want. What
is the minimum number of coins needed?

For example, if the coins are the euro coins (in cents)

{1,2,5,10,20,50,100,200}

and n = 520, we need at least four coins. The optimal solution is to select coins
200+200+100+20 whose sum is 520.

Greedy algorithm

A simple greedy algorithm to the problem always selects the largest possible coin,
until the required sum of money has been constructed. This algorithm works in
the example case, because we first select two 200 cent coins, then one 100 cent
coin and finally one 20 cent coin. But does this algorithm always work?

It turns out that if the coins are the euro coins, the greedy algorithm always
works, i.e., it always produces a solution with the fewest possible number of coins.
The correctness of the algorithm can be shown as follows:

First, each coin 1, 5, 10, 50 and 100 appears at most once in an optimal
solution, because if the solution would contain two such coins, we could replace

37

them by one coin and obtain a better solution. For example, if the solution would
contain coins 5+5, we could replace them by coin 10.

In the same way, coins 2 and 20 appear at most twice in an optimal solution,
because we could replace coins 2+2+2 by coins 5+1 and coins 20+20+20 by
coins 50+10. Moreover, an optimal solution cannot contain coins 2+2+1 or
20+20+10, because we could replace them by coins 5 and 50.

Using these observations, we can show for each coin x that it is not possible
to optimally construct a sum x or any larger sum by only using coins that are
smaller than x. For example, if x = 100, the largest optimal sum using the smaller
coins is 50+20+20+5+2+2= 99. Thus, the greedy algorithm that always selects
the largest coin produces the optimal solution.

This example shows that it can be difficult to argue that a greedy algorithm
works, even if the algorithm itself is simple.

General case

In the general case, the coin set can contain any coins and the greedy algorithm
does not necessarily produce an optimal solution.

We can prove that a greedy algorithm does not work by showing a counterex-
ample where the algorithm gives a wrong answer. In this problem we can easily
find a counterexample: if the coins are {1,3,4} and the target sum is 6, the greedy
algorithm produces the solution 4+1+1 while the optimal solution is 3+3.

It is not known if the general coin problem can be solved using any greedy
algorithm1. However, as we will see in Chapter 7, in some cases, the general
problem can be efficiently solved using a dynamic programming algorithm that
always gives the correct answer.

6.2 Scheduling

Many scheduling problems can be solved using greedy algorithms. A classic
problem is as follows: Given n events with their starting and ending times, find a
schedule that includes as many events as possible. It is not possible to select an
event partially. For example, consider the following events:

event starting time ending time
A 1 3
B 2 5
C 3 9
D 6 8

In this case the maximum number of events is two. For example, we can select
events B and D as follows:

1However, it is possible to check in polynomial time if the greedy algorithm presented in this
chapter works for a given set of coins [26].

38

A
B

C
D

It is possible to invent several greedy algorithms for the problem, but which
of them works in every case?

Algorithm 1

The first idea is to select as short events as possible. In the example case this
algorithm selects the following events:

A
B

C
D

However, selecting short events is not always a correct strategy. For example,
the algorithm fails in the following case:

If we select the short event, we can only select one event. However, it would be
possible to select both long events.

Algorithm 2

Another idea is to always select the next possible event that begins as early as
possible. This algorithm selects the following events:

A
B

C
D

However, we can find a counterexample also for this algorithm. For example,
in the following case, the algorithm only selects one event:

If we select the first event, it is not possible to select any other events. However,
it would be possible to select the other two events.

39

Algorithm 3

The third idea is to always select the next possible event that ends as early as
possible. This algorithm selects the following events:

A
B

C
D

It turns out that this algorithm always produces an optimal solution. The
reason for this is that it is always an optimal choice to first select an event that
ends as early as possible. After this, it is an optimal choice to select the next
event using the same strategy, etc., until we cannot select any more events.

One way to argue that the algorithm works is to consider what happens if we
first select an event that ends later than the event that ends as early as possible.
Now, we will have at most an equal number of choices how we can select the next
event. Hence, selecting an event that ends later can never yield a better solution,
and the greedy algorithm is correct.

6.3 Tasks and deadlines

Let us now consider a problem where we are given n tasks with durations and
deadlines and our task is to choose an order to perform the tasks. For each task,
we earn d− x points where d is the task’s deadline and x is the moment when we
finish the task. What is the largest possible total score we can obtain?

For example, suppose that the tasks are as follows:

task duration deadline
A 4 2
B 3 5
C 2 7
D 4 5

In this case, an optimal schedule for the tasks is as follows:

C B A D

0 5 10

In this solution, C yields 5 points, B yields 0 points, A yields −7 points and D
yields −8 points, so the total score is −10.

Surprisingly, the optimal solution to the problem does not depend on the
deadlines at all, but a correct greedy strategy is to simply perform the tasks
sorted by their durations in increasing order. The reason for this is that if we
ever perform two tasks one after another such that the first task takes longer
than the second task, we can obtain a better solution if we swap the tasks. For
example, consider the following schedule:

40

X Y

a b

Here a > b, so we should swap the tasks:

Y X

b a

Now X gives b points less and Y gives a points more, so the total score increases
by a−b > 0. In an optimal solution, for any two consecutive tasks, it must hold
that the shorter task comes before the longer task. Thus, the tasks must be
performed sorted by their durations.

6.4 Minimizing sums

We next consider a problem where we are given n numbers a1,a2, . . . ,an and our
task is to find a value x that minimizes the sum

|a1 − x|c +|a2 − x|c +·· ·+ |an − x|c.

We focus on the cases c = 1 and c = 2.

Case c = 1

In this case, we should minimize the sum

|a1 − x|+ |a2 − x|+ · · ·+ |an − x|.

For example, if the numbers are [1,2,9,2,6], the best solution is to select x = 2
which produces the sum

|1−2|+ |2−2|+ |9−2|+ |2−2|+ |6−2| = 12.

In the general case, the best choice for x is the median of the numbers, i.e., the
middle number after sorting. For example, the list [1,2,9,2,6] becomes [1,2,2,6,9]
after sorting, so the median is 2.

The median is an optimal choice, because if x is smaller than the median, the
sum becomes smaller by increasing x, and if x is larger then the median, the
sum becomes smaller by decreasing x. Hence, the optimal solution is that x is
the median. If n is even and there are two medians, both medians and all values
between them are optimal choices.

Case c = 2

In this case, we should minimize the sum

(a1 − x)2 + (a2 − x)2 +·· ·+ (an − x)2.

41

For example, if the numbers are [1,2,9,2,6], the best solution is to select x = 4
which produces the sum

(1−4)2 + (2−4)2 + (9−4)2 + (2−4)2 + (6−4)2 = 46.

In the general case, the best choice for x is the average of the numbers. In the
example the average is (1+2+9+2+6)/5 = 4. This result can be derived by
presenting the sum as follows:

nx2 −2x(a1 +a2 +·· ·+an)+ (a2
1 +a2

2 +·· ·+a2
n)

The last part does not depend on x, so we can ignore it. The remaining parts
form a function nx2−2xs where s = a1+a2+·· ·+an. This is a parabola opening
upwards with roots x = 0 and x = 2s/n, and the minimum value is the average of
the roots x = s/n, i.e., the average of the numbers a1,a2, . . . ,an.

6.5 Data compression

A binary code assigns for each character of a string a codeword that consists
of bits. We can compress the string using the binary code by replacing each
character by the corresponding codeword. For example, the following binary code
assigns codewords for characters A–D:

character codeword
A 00
B 01
C 10
D 11

This is a constant-length code which means that the length of each codeword is
the same. For example, we can compress the string AABACDACA as follows:

000001001011001000

Using this code, the length of the compressed string is 18 bits. However, we can
compress the string better if we use a variable-length code where codewords
may have different lengths. Then we can give short codewords for characters
that appear often and long codewords for characters that appear rarely. It turns
out that an optimal code for the above string is as follows:

character codeword
A 0
B 110
C 10
D 111

An optimal code produces a compressed string that is as short as possible. In this
case, the compressed string using the optimal code is

001100101110100,

42

so only 15 bits are needed instead of 18 bits. Thus, thanks to a better code it was
possible to save 3 bits in the compressed string.

We require that no codeword is a prefix of another codeword. For example,
it is not allowed that a code would contain both codewords 10 and 1011. The
reason for this is that we want to be able to generate the original string from
the compressed string. If a codeword could be a prefix of another codeword, this
would not always be possible. For example, the following code is not valid:

character codeword
A 10
B 11
C 1011
D 111

Using this code, it would not be possible to know if the compressed string 1011
corresponds to the string AB or the string C.

Huffman coding

Huffman coding2 is a greedy algorithm that constructs an optimal code for
compressing a given string. The algorithm builds a binary tree based on the
frequencies of the characters in the string, and each character’s codeword can be
read by following a path from the root to the corresponding node. A move to the
left corresponds to bit 0, and a move to the right corresponds to bit 1.

Initially, each character of the string is represented by a node whose weight
is the number of times the character occurs in the string. Then at each step two
nodes with minimum weights are combined by creating a new node whose weight
is the sum of the weights of the original nodes. The process continues until all
nodes have been combined.

Next we will see how Huffman coding creates the optimal code for the string
AABACDACA. Initially, there are four nodes that correspond to the characters of the
string:

5 1 2 1

A B C D

The node that represents character A has weight 5 because character A appears 5
times in the string. The other weights have been calculated in the same way.

The first step is to combine the nodes that correspond to characters B and D,
both with weight 1. The result is:

5 2 1 1

2

A C B D

0 1

2D. A. Huffman discovered this method when solving a university course assignment and
published the algorithm in 1952 [20].

43

After this, the nodes with weight 2 are combined:

5

2

1 1

2

4

A

C

B D

0 1

0 1

Finally, the two remaining nodes are combined:

5

2

1 1

2

4

9

A

C

B D

0 1

0 1

0 1

Now all nodes are in the tree, so the code is ready. The following codewords
can be read from the tree:

character codeword
A 0
B 110
C 10
D 111

44

Chapter 7

Dynamic programming

Dynamic programming is a technique that combines the correctness of com-
plete search and the efficiency of greedy algorithms. Dynamic programming can
be applied if the problem can be divided into overlapping subproblems that can
be solved independently.

There are two uses for dynamic programming:

• Finding an optimal solution: We want to find a solution that is as large
as possible or as small as possible.

• Counting the number of solutions: We want to calculate the total
number of possible solutions.

We will first see how dynamic programming can be used to find an optimal
solution, and then we will use the same idea for counting the solutions.

Understanding dynamic programming is a milestone in every competitive
programmer’s career. While the basic idea is simple, the challenge is how to apply
dynamic programming to different problems. This chapter introduces a set of
classic problems that are a good starting point.

7.1 Coin problem

We first focus on a problem that we have already seen in Chapter 6: Given a set
of coin values coins= {c1, c2, . . . , ck} and a target sum of money n, our task is to
form the sum n using as few coins as possible.

In Chapter 6, we solved the problem using a greedy algorithm that always
chooses the largest possible coin. The greedy algorithm works, for example, when
the coins are the euro coins, but in the general case the greedy algorithm does
not necessarily produce an optimal solution.

Now is time to solve the problem efficiently using dynamic programming, so
that the algorithm works for any coin set. The dynamic programming algorithm
is based on a recursive function that goes through all possibilities how to form
the sum, like a brute force algorithm. However, the dynamic programming
algorithm is efficient because it uses memoization and calculates the answer to
each subproblem only once.

45

Recursive formulation

The idea in dynamic programming is to formulate the problem recursively so
that the solution to the problem can be calculated from solutions to smaller
subproblems. In the coin problem, a natural recursive problem is as follows: what
is the smallest number of coins required to form a sum x?

Let solve(x) denote the minimum number of coins required for a sum x.
The values of the function depend on the values of the coins. For example, if
coins= {1,3,4}, the first values of the function are as follows:

solve(0) = 0
solve(1) = 1
solve(2) = 2
solve(3) = 1
solve(4) = 1
solve(5) = 2
solve(6) = 2
solve(7) = 2
solve(8) = 2
solve(9) = 3
solve(10) = 3

For example, solve(10) = 3, because at least 3 coins are needed to form the
sum 10. The optimal solution is 3+3+4= 10.

The essential property of solve is that its values can be recursively calculated
from its smaller values. The idea is to focus on the first coin that we choose for
the sum. For example, in the above scenario, the first coin can be either 1, 3
or 4. If we first choose coin 1, the remaining task is to form the sum 9 using
the minimum number of coins, which is a subproblem of the original problem.
Of course, the same applies to coins 3 and 4. Thus, we can use the following
recursive formula to calculate the minimum number of coins:

solve(x)=min(solve(x−1)+1,
solve(x−3)+1,
solve(x−4)+1).

The base case of the recursion is solve(0) = 0, because no coins are needed to
form an empty sum. For example,

solve(10)= solve(7)+1= solve(4)+2= solve(0)+3= 3.

Now we are ready to give a general recursive function that calculates the
minimum number of coins needed to form a sum x:

solve(x)=


∞ x < 0
0 x = 0
minc∈coinssolve(x− c)+1 x > 0

First, if x < 0, the value is ∞, because it is impossible to form a negative sum
of money. Then, if x = 0, the value is 0, because no coins are needed to form an

46

empty sum. Finally, if x > 0, the variable c goes through all possibilities how to
choose the first coin of the sum.

Once a recursive function that solves the problem has been found, we can
directly implement a solution in C++ (the constant INF denotes infinity):

def solve(x):

if x < 0:

return INF

if x == 0:

return 0

best = INF

for c in coins:

best = min(best, solve(x-c)+1)

return best

Still, this function is not efficient, because there may be an exponential
number of ways to construct the sum. However, next we will see how to make the
function efficient using a technique called memoization.

Using memoization

The idea of dynamic programming is to use memoization to efficiently calculate
values of a recursive function. This means that the values of the function are
stored in an array after calculating them. For each parameter, the value of the
function is calculated recursively only once, and after this, the value can be
directly retrieved from the array.

In this problem, we use lists

ready = [False]*N

value = [0]*N

where ready[x] indicates whether the value of solve(x) has been calculated,
and if it is, value[x] contains this value. The constant N has been chosen so that
all required values fit in the arrays.

Now the function can be efficiently implemented as follows:

47

def solve(x):

if x < 0:

return INF

if x == 0:

return 0

if ready[x]:

return value[x]

best = INF

for c in coins:

best = min(best, solve(x-c)+1)

value[x] = best

ready[x] = true

return best

The function handles the base cases x < 0 and x = 0 as previously. Then the
function checks from ready[x] if solve(x) has already been stored in value[x], and
if it is, the function directly returns it. Otherwise the function calculates the
value of solve(x) recursively and stores it in value[x].

This function works efficiently, because the answer for each parameter x is
calculated recursively only once. After a value of solve(x) has been stored in
value[x], it can be efficiently retrieved whenever the function will be called again
with the parameter x. The time complexity of the algorithm is O(nk), where n is
the target sum and k is the number of coins.

When you use recursion in Python you might have to increase the recursion
limit by adding the following in the beginning of your code:

import sys

sys.setrecursionlimit(10**6)

This sets the recursion limit to 106. You might need another number than 106.

Note that we can also iteratively construct the array value of length N +1
using a loop that simply calculates all the values of solve for parameters 0 . . . x:

value[0] = 0

for x in range (1,n+1):

value[x] = INF

for c in coins:

if (x >= c):

value[x] = min(value[x], value[x-c]+1)

In fact, most competitive programmers prefer this implementation, because
it is shorter and has lower constant factors. From now on, we also use iterative
implementations in our examples. Still, it is often easier to think about dynamic
programming solutions in terms of recursive functions.

48

Constructing a solution

Sometimes we are asked both to find the value of an optimal solution and to give
an example how such a solution can be constructed. In the coin problem, for
example, we can construct another list that indicates for each sum of money the
first coin in an optimal solution:

first = [0]*(N+1)

Then, we can modify the algorithm as follows:

value[0] = 0

for x in range (1,n+1):

value[x] = INF

for c in coins:

if (x >= c and value[x-c]+1 < value[x])

value[x] = value[x-c]+1

first[x] = c

After this, the following code can be used to print the coins that appear in an
optimal solution for the sum n:

while (n > 0):

print(first[n])

n -= first[n]

Counting the number of solutions

Let us now consider another version of the coin problem where our task is to
calculate the total number of ways to produce a sum x using the coins. For
example, if coins= {1,3,4} and x = 5, there are a total of 6 ways:

• 1+1+1+1+1

• 1+1+3

• 1+3+1

• 3+1+1

• 1+4

• 4+1

Again, we can solve the problem recursively. Let solve(x) denote the number
of ways we can form the sum x. For example, if coins= {1,3,4}, then solve(5)= 6
and the recursive formula is

solve(x)=solve(x−1)+
solve(x−3)+
solve(x−4).

49

Then, the general recursive function is as follows:

solve(x)=


0 x < 0
1 x = 0∑

c∈coinssolve(x− c) x > 0

If x < 0, the value is 0, because there are no solutions. If x = 0, the value is 1,
because there is only one way to form an empty sum. Otherwise we calculate the
sum of all values of the form solve(x− c) where c is in coins.

The following code constructs a list count such that count[x] equals the value
of solve(x) for 0≤ x ≤ n:

count[0] = 1

for x in range(n):

for c in coins:

if (x-c >= 0):

count[x] += count[x-c]

Often the number of solutions is so large that it is not required to calculate the
exact number but it is enough to give the answer modulo m where, for example,
m = 109 +7. This can be done by changing the code so that all calculations are
done modulo m. In the above code, it suffices to add the line

count[x] %= m

after the line

count[x] += count[x-c]

Now we have discussed all basic ideas of dynamic programming. Since
dynamic programming can be used in many different situations, we will now go
through a set of problems that show further examples about the possibilities of
dynamic programming.

7.2 Longest increasing subsequence

Our first problem is to find the longest increasing subsequence in an array
of n elements. This is a maximum-length sequence of array elements that goes
from left to right, and each element in the sequence is larger than the previous
element. For example, in the array

6 2 5 1 7 4 8 3

0 1 2 3 4 5 6 7

the longest increasing subsequence contains 4 elements:

50

6 2 5 1 7 4 8 3

0 1 2 3 4 5 6 7

Let length(k) denote the length of the longest increasing subsequence that
ends at position k. Thus, if we calculate all values of length(k) where 0≤ k ≤ n−1,
we will find out the length of the longest increasing subsequence. For example,
the values of the function for the above array are as follows:

length(0) = 1
length(1) = 1
length(2) = 2
length(3) = 1
length(4) = 3
length(5) = 2
length(6) = 4
length(7) = 2

For example, length(6)= 4, because the longest increasing subsequence that
ends at position 6 consists of 4 elements.

To calculate a value of length(k), we should find a position i < k for which
array[i] < array[k] and length(i) is as large as possible. Then we know that
length(k) = length(i)+1, because this is an optimal way to add array[k] to a
subsequence. However, if there is no such position i, then length(k)= 1, which
means that the subsequence only contains array[k].

Since all values of the function can be calculated from its smaller values, we
can use dynamic programming. In the following code, the values of the function
will be stored in a list length.

for k in range (n):

length[k] = 1

for i in range(k):

if (array[i] < array[k]):

length[k] = max(length[k],length[i]+1)

This code works in O(n2) time, because it consists of two nested loops. How-
ever, it is also possible to implement the dynamic programming calculation more
efficiently in O(n logn) time. Can you find a way to do this?

7.3 Paths in a grid

Our next problem is to find a path from the upper-left corner to the lower-right
corner of an n×n grid, such that we only move down and right. Each square
contains a positive integer, and the path should be constructed so that the sum of
the values along the path is as large as possible.

The following picture shows an optimal path in a grid:

51

3 7 9 2 7

9 8 3 5 5

1 7 9 8 5

3 8 6 4 10

6 3 9 7 8

The sum of the values on the path is 67, and this is the largest possible sum on a
path from the upper-left corner to the lower-right corner.

Assume that the rows and columns of the grid are numbered from 1 to n, and
value[y][x] equals the value of square (y, x). Let sum(y, x) denote the maximum
sum on a path from the upper-left corner to square (y, x). Now sum(n,n) tells
us the maximum sum from the upper-left corner to the lower-right corner. For
example, in the above grid, sum(5,5)= 67.

We can recursively calculate the sums as follows:

sum(y, x)=max(sum(y, x−1),sum(y−1, x))+value[y][x]

The recursive formula is based on the observation that a path that ends at
square (y, x) can come either from square (y, x−1) or square (y−1, x):

→
↓

Thus, we select the direction that maximizes the sum. We assume that
sum(y, x) = 0 if y = 0 or x = 0 (because no such paths exist), so the recursive
formula also works when y= 1 or x = 1.

Since the function sum has two parameters, the dynamic programming list
also has two dimensions. For example, we can use a list

sum = [[0 for i in range(N)] for j in range(N)]

and calculate the sums as follows:

for y in range(1,n+1):

for x in range(1,n+1):

sum[y][x] = max(sum[y][x-1],sum[y-1][x]) + value[y][x]

The time complexity of the algorithm is O(n2).

7.4 Knapsack problems

The term knapsack refers to problems where a set of objects is given, and subsets
with some properties have to be found. Knapsack problems can often be solved

52

using dynamic programming.
In this section, we focus on the following problem: Given a list of weights

[w1,w2, . . . ,wn], determine all sums that can be constructed using the weights.
For example, if the weights are [1,3,3,5], the following sums are possible:

0 1 2 3 4 5 6 7 8 9 10 11 12
X X X X X X X X X X X

In this case, all sums between 0 . . .12 are possible, except 2 and 10. For
example, the sum 7 is possible because we can select the weights [1,3,3].

To solve the problem, we focus on subproblems where we only use the first k
weights to construct sums. Let possible(x,k)= true if we can construct a sum x
using the first k weights, and otherwise possible(x,k)= false. The values of the
function can be recursively calculated as follows:

possible(x,k)= possible(x−wk,k−1)∨possible(x,k−1)

The formula is based on the fact that we can either use or not use the weight wk
in the sum. If we use wk, the remaining task is to form the sum x−wk using the
first k−1 weights, and if we do not use wk, the remaining task is to form the sum
x using the first k−1 weights. As the base cases,

possible(x,0)=
{

true x = 0
false x ̸= 0

because if no weights are used, we can only form the sum 0.
The following table shows all values of the function for the weights [1,3,3,5]

(the symbol ”X” indicates the true values):

k\x 0 1 2 3 4 5 6 7 8 9 10 11 12
0 X
1 X X
2 X X X X
3 X X X X X X
4 X X X X X X X X X X X

After calculating those values, possible(x,n) tells us whether we can con-
struct a sum x using all weights.

Let W denote the total sum of the weights. The following O(nW) time dynamic
programming solution corresponds to the recursive function:

possible[0][0] = True

for k in range(1,n):

for x in range(W+1):

if (x-w[k] >= 0):

possible[x][k] |= possible[x-w[k]][k-1]

possible[x][k] |= possible[x][k-1]

53

However, here is a better implementation that only uses a one-dimensional
array possible[x] that indicates whether we can construct a subset with sum x.
The trick is to update the list from right to left for each new weight:

possible[0] = True

for k in range(1,n+1):

for x in range(W, -1, -1):

if (possible[x]):

possible[x+w[k]] = True

Note that the general idea presented here can be used in many knapsack
problems. For example, if we are given objects with weights and values, we can
determine for each weight sum the maximum value sum of a subset.

7.5 Edit distance

The edit distance or Levenshtein distance1 is the minimum number of editing
operations needed to transform a string into another string. The allowed editing
operations are as follows:

• insert a character (e.g. ABC → ABCA)

• remove a character (e.g. ABC → AC)

• modify a character (e.g. ABC → ADC)

For example, the edit distance between LOVE and MOVIE is 2, because we can
first perform the operation LOVE → MOVE (modify) and then the operation MOVE →
MOVIE (insert). This is the smallest possible number of operations, because it is
clear that only one operation is not enough.

Suppose that we are given a string x of length n and a string y of length m,
and we want to calculate the edit distance between x and y. To solve the problem,
we define a function distance(a,b) that gives the edit distance between prefixes
x[0 . . .a] and y[0 . . .b]. Thus, using this function, the edit distance between x and
y equals distance(n−1,m−1).

We can calculate values of distance as follows:

distance(a,b)=min(distance(a,b−1)+1,
distance(a−1,b)+1,
distance(a−1,b−1)+cost(a,b)).

Here cost(a,b) = 0 if x[a] = y[b], and otherwise cost(a,b) = 1. The formula
considers the following ways to edit the string x:

• distance(a,b−1): insert a character at the end of x

1The distance is named after V. I. Levenshtein who studied it in connection with binary codes
[25].

54

• distance(a−1,b): remove the last character from x

• distance(a−1,b−1): match or modify the last character of x

In the two first cases, one editing operation is needed (insert or remove). In the
last case, if x[a] = y[b], we can match the last characters without editing, and
otherwise one editing operation is needed (modify).

The following table shows the values of distance in the example case:

L

O

V

E

M O V I E

0

1

2

3

4

1

1

2

3

4

2

2

1

2

3

3

3

2

1

2

4

4

3

2

2

5

5

4

3

2

The lower-right corner of the table tells us that the edit distance between
LOVE and MOVIE is 2. The table also shows how to construct the shortest sequence
of editing operations. In this case the path is as follows:

L

O

V

E

M O V I E

0

1

2

3

4

1

1

2

3

4

2

2

1

2

3

3

3

2

1

2

4

4

3

2

2

5

5

4

3

2

The last characters of LOVE and MOVIE are equal, so the edit distance between
them equals the edit distance between LOV and MOVI. We can use one editing
operation to remove the character I from MOVI. Thus, the edit distance is one
larger than the edit distance between LOV and MOV, etc.

7.6 Counting tilings

Sometimes the states of a dynamic programming solution are more complex
than fixed combinations of numbers. As an example, consider the problem of
calculating the number of distinct ways to fill an n×m grid using 1×2 and 2×1
size tiles. For example, one valid solution for the 4×7 grid is

55

and the total number of solutions is 781.
The problem can be solved using dynamic programming by going through

the grid row by row. Each row in a solution can be represented as a string that
contains m characters from the set {⊓,⊔,⊏,⊐}. For example, the above solution
consists of four rows that correspond to the following strings:

• ⊓⊏⊐⊓⊏⊐⊓
• ⊔⊏⊐⊔⊓⊓⊔
• ⊏⊐⊏⊐⊔⊔⊓
• ⊏⊐⊏⊐⊏⊐⊔
Let count(k, x) denote the number of ways to construct a solution for rows

1 . . .k of the grid such that string x corresponds to row k. It is possible to use
dynamic programming here, because the state of a row is constrained only by the
state of the previous row.

A solution is valid if row 1 does not contain the character ⊔, row n does not
contain the character ⊓, and all consecutive rows are compatible. For example, the
rows ⊔⊏⊐⊔⊓⊓⊔ and ⊏⊐⊏⊐⊔⊔⊓ are compatible, while the rows ⊓⊏⊐⊓⊏⊐⊓
and ⊏⊐⊏⊐⊏⊐⊔ are not compatible.

Since a row consists of m characters and there are four choices for each
character, the number of distinct rows is at most 4m. Thus, the time complexity
of the solution is O(n42m) because we can go through the O(4m) possible states
for each row, and for each state, there are O(4m) possible states for the previous
row. In practice, it is a good idea to rotate the grid so that the shorter side has
length m, because the factor 42m dominates the time complexity.

It is possible to make the solution more efficient by using a more compact
representation for the rows. It turns out that it is sufficient to know which
columns of the previous row contain the upper square of a vertical tile. Thus, we
can represent a row using only characters ⊓ and □, where □ is a combination
of characters ⊔, ⊏ and ⊐. Using this representation, there are only 2m distinct
rows and the time complexity is O(n22m).

As a final note, there is also a surprising direct formula for calculating the
number of tilings2:

⌈n/2⌉∏
a=1

⌈m/2⌉∏
b=1

4 · (cos2 πa
n+1

+cos2 πb
m+1

)

This formula is very efficient, because it calculates the number of tilings in O(nm)
time, but since the answer is a product of real numbers, a problem when using
the formula is how to store the intermediate results accurately.

2Surprisingly, this formula was discovered in 1961 by two research teams [21, 34] that worked
independently.

56

Chapter 8

Amortized analysis

The time complexity of an algorithm is often easy to analyze just by examining
the structure of the algorithm: what loops does the algorithm contain and how
many times the loops are performed. However, sometimes a straightforward
analysis does not give a true picture of the efficiency of the algorithm.

Amortized analysis can be used to analyze algorithms that contain opera-
tions whose time complexity varies. The idea is to estimate the total time used to
all such operations during the execution of the algorithm, instead of focusing on
individual operations.

8.1 Two pointers method

In the two pointers method, two pointers are used to iterate through the array
values. Both pointers can move to one direction only, which ensures that the
algorithm works efficiently. Next we discuss two problems that can be solved
using the two pointers method.

Subarray sum

As the first example, consider a problem where we are given an array of n positive
integers and a target sum x, and we want to find a subarray whose sum is x or
report that there is no such subarray.

For example, the array

1 3 2 5 1 1 2 3

contains a subarray whose sum is 8:

1 3 2 5 1 1 2 3

This problem can be solved in O(n) time by using the two pointers method.
The idea is to maintain pointers that point to the first and last value of a subarray.
On each turn, the left pointer moves one step to the right, and the right pointer
moves to the right as long as the resulting subarray sum is at most x. If the sum
becomes exactly x, a solution has been found.

57

As an example, consider the following array and a target sum x = 8:

1 3 2 5 1 1 2 3

The initial subarray contains the values 1, 3 and 2 whose sum is 6:

1 3 2 5 1 1 2 3

Then, the left pointer moves one step to the right. The right pointer does not
move, because otherwise the subarray sum would exceed x.

1 3 2 5 1 1 2 3

Again, the left pointer moves one step to the right, and this time the right
pointer moves three steps to the right. The subarray sum is 2+5+1 = 8, so a
subarray whose sum is x has been found.

1 3 2 5 1 1 2 3

The running time of the algorithm depends on the number of steps the right
pointer moves. While there is no useful upper bound on how many steps the
pointer can move on a single turn. we know that the pointer moves a total of
O(n) steps during the algorithm, because it only moves to the right.

Since both the left and right pointer move O(n) steps during the algorithm,
the algorithm works in O(n) time.

2SUM problem

Another problem that can be solved using the two pointers method is the following
problem, also known as the 2SUM problem: given an array of n numbers and a
target sum x, find two array values such that their sum is x, or report that no
such values exist.

To solve the problem, we first sort the array values in increasing order. After
that, we iterate through the array using two pointers. The left pointer starts at
the first value and moves one step to the right on each turn. The right pointer
begins at the last value and always moves to the left until the sum of the left and
right value is at most x. If the sum is exactly x, a solution has been found.

For example, consider the following array and a target sum x = 12:

1 4 5 6 7 9 9 10

The initial positions of the pointers are as follows. The sum of the values is
1+10= 11 that is smaller than x.

58

1 4 5 6 7 9 9 10

Then the left pointer moves one step to the right. The right pointer moves
three steps to the left, and the sum becomes 4+7= 11.

1 4 5 6 7 9 9 10

After this, the left pointer moves one step to the right again. The right pointer
does not move, and a solution 5+7= 12 has been found.

1 4 5 6 7 9 9 10

The running time of the algorithm is O(n logn), because it first sorts the array
in O(n logn) time, and then both pointers move O(n) steps.

Note that it is possible to solve the problem in another way in O(n logn) time
using binary search. In such a solution, we iterate through the array and for
each array value, we try to find another value that yields the sum x. This can be
done by performing n binary searches, each of which takes O(logn) time.

A more difficult problem is the 3SUM problem that asks to find three array
values whose sum is x. Using the idea of the above algorithm, this problem can
be solved in O(n2) time1. Can you see how?

8.2 Nearest smaller elements

Amortized analysis is often used to estimate the number of operations performed
on a data structure. The operations may be distributed unevenly so that most
operations occur during a certain phase of the algorithm, but the total number of
the operations is limited.

As an example, consider the problem of finding for each array element the
nearest smaller element, i.e., the first smaller element that precedes the
element in the array. It is possible that no such element exists, in which case the
algorithm should report this. Next we will see how the problem can be efficiently
solved using a stack structure.

We go through the array from left to right and maintain a stack of array
elements. At each array position, we remove elements from the stack until the
top element is smaller than the current element, or the stack is empty. Then, we
report that the top element is the nearest smaller element of the current element,
or if the stack is empty, there is no such element. Finally, we add the current
element to the stack.

As an example, consider the following array:
1For a long time, it was thought that solving the 3SUM problem more efficiently than in O(n2)

time would not be possible. However, in 2014, it turned out [17] that this is not the case.

59

1 3 4 2 5 3 4 2

First, the elements 1, 3 and 4 are added to the stack, because each element is
larger than the previous element. Thus, the nearest smaller element of 4 is 3,
and the nearest smaller element of 3 is 1.

1 3 4 2 5 3 4 2

1 3 4

The next element 2 is smaller than the two top elements in the stack. Thus,
the elements 3 and 4 are removed from the stack, and then the element 2 is
added to the stack. Its nearest smaller element is 1:

1 3 4 2 5 3 4 2

1 2

Then, the element 5 is larger than the element 2, so it will be added to the
stack, and its nearest smaller element is 2:

1 3 4 2 5 3 4 2

1 2 5

After this, the element 5 is removed from the stack and the elements 3 and 4
are added to the stack:

1 3 4 2 5 3 4 2

1 2 3 4

Finally, all elements except 1 are removed from the stack and the last element
2 is added to the stack:

1 3 4 2 5 3 4 2

1 2

The efficiency of the algorithm depends on the total number of stack opera-
tions. If the current element is larger than the top element in the stack, it is
directly added to the stack, which is efficient. However, sometimes the stack can
contain several larger elements and it takes time to remove them. Still, each
element is added exactly once to the stack and removed at most once from the
stack. Thus, each element causes O(1) stack operations, and the algorithm works
in O(n) time.

60

8.3 Sliding window minimum

A sliding window is a constant-size subarray that moves from left to right
through the array. At each window position, we want to calculate some infor-
mation about the elements inside the window. In this section, we focus on the
problem of maintaining the sliding window minimum, which means that we
should report the smallest value inside each window.

The sliding window minimum can be calculated using a similar idea that
we used to calculate the nearest smaller elements. We maintain a queue where
each element is larger than the previous element, and the first element always
corresponds to the minimum element inside the window. After each window
move, we remove elements from the end of the queue until the last queue element
is smaller than the new window element, or the queue becomes empty. We also
remove the first queue element if it is not inside the window anymore. Finally,
we add the new window element to the end of the queue.

As an example, consider the following array:

2 1 4 5 3 4 1 2

Suppose that the size of the sliding window is 4. At the first window position,
the smallest value is 1:

2 1 4 5 3 4 1 2

1 4 5

Then the window moves one step right. The new element 3 is smaller than
the elements 4 and 5 in the queue, so the elements 4 and 5 are removed from the
queue and the element 3 is added to the queue. The smallest value is still 1.

2 1 4 5 3 4 1 2

1 3

After this, the window moves again, and the smallest element 1 does not
belong to the window anymore. Thus, it is removed from the queue and the
smallest value is now 3. Also the new element 4 is added to the queue.

2 1 4 5 3 4 1 2

3 4

The next new element 1 is smaller than all elements in the queue. Thus, all
elements are removed from the queue and it will only contain the element 1:

2 1 4 5 3 4 1 2

1

61

Finally the window reaches its last position. The element 2 is added to the
queue, but the smallest value inside the window is still 1.

2 1 4 5 3 4 1 2

1 2

Since each array element is added to the queue exactly once and removed
from the queue at most once, the algorithm works in O(n) time.

62

Chapter 9

Range queries

In this chapter, we discuss data structures that allow us to efficiently process
range queries. In a range query, our task is to calculate a value based on a
subarray of an array. Typical range queries are:

• sumq(a,b): calculate the sum of values in range [a,b]

• minq(a,b): find the minimum value in range [a,b]

• maxq(a,b): find the maximum value in range [a,b]

For example, consider the range [3,6] in the following array:

1 3 8 4 6 1 3 4

0 1 2 3 4 5 6 7

In this case, sumq(3,6)= 14, minq(3,6)= 1 and maxq(3,6)= 6.
A simple way to process range queries is to use a loop that goes through all

array values in the range. For example, the following function can be used to
process sum queries on an array:

def sum(a, b) {

s = 0

for i in range(a, b+1):

s += array[i]

return s

This function works in O(n) time, where n is the size of the array. Thus, we
can process q queries in O(nq) time using the function. However, if both n and q
are large, this approach is slow. Fortunately, it turns out that there are ways to
process range queries much more efficiently.

9.1 Static array queries

We first focus on a situation where the array is static, i.e., the array values are
never updated between the queries. In this case, it suffices to construct a static
data structure that tells us the answer for any possible query.

63

Sum queries

We can easily process sum queries on a static array by constructing a prefix
sum array. Each value in the prefix sum array equals the sum of values in the
original array up to that position, i.e., the value at position k is sumq(0,k). The
prefix sum array can be constructed in O(n) time.

For example, consider the following array:

1 3 4 8 6 1 4 2

0 1 2 3 4 5 6 7

The corresponding prefix sum array is as follows:

1 4 8 16 22 23 27 29

0 1 2 3 4 5 6 7

Since the prefix sum array contains all values of sumq(0,k), we can calculate any
value of sumq(a,b) in O(1) time as follows:

sumq(a,b)= sumq(0,b)−sumq(0,a−1)

By defining sumq(0,−1)= 0, the above formula also holds when a = 0.
For example, consider the range [3,6]:

1 3 4 8 6 1 4 2

0 1 2 3 4 5 6 7

In this case sumq(3,6) = 8+6+1+4 = 19. This sum can be calculated from two
values of the prefix sum array:

1 4 8 16 22 23 27 29

0 1 2 3 4 5 6 7

Thus, sumq(3,6)= sumq(0,6)−sumq(0,2)= 27−8= 19.
It is also possible to generalize this idea to higher dimensions. For example,

we can construct a two-dimensional prefix sum array that can be used to calculate
the sum of any rectangular subarray in O(1) time. Each sum in such an array
corresponds to a subarray that begins at the upper-left corner of the array.

The following picture illustrates the idea:

AB

CD

The sum of the gray subarray can be calculated using the formula

S(A)−S(B)−S(C)+S(D),

64

where S(X) denotes the sum of values in a rectangular subarray from the upper-
left corner to the position of X .

Minimum queries

Minimum queries are more difficult to process than sum queries. Still, there is
a quite simple O(n logn) time preprocessing method after which we can answer
any minimum query in O(1) time1. Note that since minimum and maximum
queries can be processed similarly, we can focus on minimum queries.

The idea is to precalculate all values of minq(a,b) where b−a+1 (the length
of the range) is a power of two. For example, for the array

1 3 4 8 6 1 4 2

0 1 2 3 4 5 6 7

the following values are calculated:

a b minq(a,b)
0 0 1
1 1 3
2 2 4
3 3 8
4 4 6
5 5 1
6 6 4
7 7 2

a b minq(a,b)
0 1 1
1 2 3
2 3 4
3 4 6
4 5 1
5 6 1
6 7 2

a b minq(a,b)
0 3 1
1 4 3
2 5 1
3 6 1
4 7 1
0 7 1

The number of precalculated values is O(n logn), because there are O(logn)
range lengths that are powers of two. The values can be calculated efficiently
using the recursive formula

minq(a,b)=min(minq(a,a+w−1),minq(a+w,b)),

where b−a+1 is a power of two and w = (b−a+1)/2. Calculating all those values
takes O(n logn) time.

After this, any value of minq(a,b) can be calculated in O(1) time as a minimum
of two precalculated values. Let k be the largest power of two that does not exceed
b−a+1. We can calculate the value of minq(a,b) using the formula

minq(a,b)=min(minq(a,a+k−1),minq(b−k+1,b)).

In the above formula, the range [a,b] is represented as the union of the ranges
[a,a+k−1] and [b−k+1,b], both of length k.

As an example, consider the range [1,6]:

1This technique was introduced in [4] and sometimes called the sparse table method. There
are also more sophisticated techniques [13] where the preprocessing time is only O(n), but such
algorithms are not needed in competitive programming.

65

1 3 4 8 6 1 4 2

0 1 2 3 4 5 6 7

The length of the range is 6, and the largest power of two that does not exceed 6
is 4. Thus the range [1,6] is the union of the ranges [1,4] and [3,6]:

1 3 4 8 6 1 4 2

0 1 2 3 4 5 6 7

1 3 4 8 6 1 4 2

0 1 2 3 4 5 6 7

Since minq(1,4)= 3 and minq(3,6)= 1, we conclude that minq(1,6)= 1.

9.2 Binary indexed tree

A binary indexed tree or a Fenwick tree2 can be seen as a dynamic variant
of a prefix sum array. It supports two O(logn) time operations on an array:
processing a range sum query and updating a value.

The advantage of a binary indexed tree is that it allows us to efficiently update
array values between sum queries. This would not be possible using a prefix sum
array, because after each update, it would be necessary to build the whole prefix
sum array again in O(n) time.

Structure

Even if the name of the structure is a binary indexed tree, it is usually represented
as an array. In this section we assume that all arrays are one-indexed, because it
makes the implementation easier.

Let p(k) denote the largest power of two that divides k. We store a binary
indexed tree as an array tree such that

tree[k]= sumq(k− p(k)+1,k),

i.e., each position k contains the sum of values in a range of the original array
whose length is p(k) and that ends at position k. For example, since p(6) = 2,
tree[6] contains the value of sumq(5,6).

For example, consider the following array:

1 3 4 8 6 1 4 2

1 2 3 4 5 6 7 8

The corresponding binary indexed tree is as follows:

2The binary indexed tree structure was presented by P. M. Fenwick in 1994 [12].

66

1 4 4 16 6 7 4 29

1 2 3 4 5 6 7 8

The following picture shows more clearly how each value in the binary indexed
tree corresponds to a range in the original array:

1 4 4 16 6 7 4 29

1 2 3 4 5 6 7 8

Using a binary indexed tree, any value of sumq(1,k) can be calculated in
O(logn) time, because a range [1,k] can always be divided into O(logn) ranges
whose sums are stored in the tree.

For example, the range [1,7] consists of the following ranges:

1 4 4 16 6 7 4 29

1 2 3 4 5 6 7 8

Thus, we can calculate the corresponding sum as follows:

sumq(1,7)= sumq(1,4)+sumq(5,6)+sumq(7,7)= 16+7+4= 27

To calculate the value of sumq(a,b) where a > 1, we can use the same trick
that we used with prefix sum arrays:

sumq(a,b)= sumq(1,b)−sumq(1,a−1).

Since we can calculate both sumq(1,b) and sumq(1,a−1) in O(logn) time, the total
time complexity is O(logn).

Then, after updating a value in the original array, several values in the binary
indexed tree should be updated. For example, if the value at position 3 changes,
the sums of the following ranges change:

67

1 4 4 16 6 7 4 29

1 2 3 4 5 6 7 8

Since each array element belongs to O(logn) ranges in the binary indexed
tree, it suffices to update O(logn) values in the tree.

Implementation

The operations of a binary indexed tree can be efficiently implemented using bit
operations. The key fact needed is that we can calculate any value of p(k) using
the formula

p(k)= k&−k.

The following function calculates the value of sumq(1,k):

def sum(k):

s = 0

while (k >= 1):

s += tree[k]

k -= k&-k

return s

The following function increases the array value at position k by x (x can be
positive or negative):

add(k, x):

while (k <= n):

tree[k] += x

k += k&-k

The time complexity of both the functions is O(logn), because the functions
access O(logn) values in the binary indexed tree, and each move to the next
position takes O(1) time.

9.3 Segment tree

A segment tree3 is a data structure that supports two operations: processing
a range query and updating an array value. Segment trees can support sum

3The bottom-up-implementation in this chapter corresponds to that in [30]. Similar structures
were used in late 1970’s to solve geometric problems [7].

68

queries, minimum and maximum queries and many other queries so that both
operations work in O(logn) time.

Compared to a binary indexed tree, the advantage of a segment tree is that it
is a more general data structure. While binary indexed trees only support sum
queries4, segment trees also support other queries. On the other hand, a segment
tree requires more memory and is a bit more difficult to implement.

Structure

A segment tree is a binary tree such that the nodes on the bottom level of the
tree correspond to the array elements, and the other nodes contain information
needed for processing range queries.

In this section, we assume that the size of the array is a power of two and
zero-based indexing is used, because it is convenient to build a segment tree for
such an array. If the size of the array is not a power of two, we can always append
extra elements to it.

We will first discuss segment trees that support sum queries. As an example,
consider the following array:

5 8 6 3 2 7 2 6

0 1 2 3 4 5 6 7

The corresponding segment tree is as follows:

5 8 6 3 2 7 2 6

13 9 9 8

22 17

39

Each internal tree node corresponds to an array range whose size is a power
of two. In the above tree, the value of each internal node is the sum of the
corresponding array values, and it can be calculated as the sum of the values of
its left and right child node.

It turns out that any range [a,b] can be divided into O(logn) ranges whose
values are stored in tree nodes. For example, consider the range [2,7]:

5 8 6 3 2 7 2 6

0 1 2 3 4 5 6 7

4In fact, using two binary indexed trees it is possible to support minimum queries [9], but this
is more complicated than to use a segment tree.

69

Here sumq(2,7)= 6+3+2+7+2+6= 26. In this case, the following two tree nodes
correspond to the range:

5 8 6 3 2 7 2 6

13 9 9 8

22 17

39

Thus, another way to calculate the sum is 9+17= 26.
When the sum is calculated using nodes located as high as possible in the

tree, at most two nodes on each level of the tree are needed. Hence, the total
number of nodes is O(logn).

After an array update, we should update all nodes whose value depends on
the updated value. This can be done by traversing the path from the updated
array element to the top node and updating the nodes along the path.

The following picture shows which tree nodes change if the array value 7
changes:

5 8 6 3 2 7 2 6

13 9 9 8

22 17

39

The path from bottom to top always consists of O(logn) nodes, so each update
changes O(logn) nodes in the tree.

Implementation

We store a segment tree as a list of 2n elements where n is the size of the original
array and a power of two. The tree nodes are stored from top to bottom: tree[1]
is the top node, tree[2] and tree[3] are its children, and so on. Finally, the values
from tree[n] to tree[2n−1] correspond to the values of the original array on the
bottom level of the tree.

For example, the segment tree

70

5 8 6 3 2 7 2 6

13 9 9 8

22 17

39

is stored as follows:

39 22 17 13 9 9 8 5 8 6 3 2 7 2 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Using this representation, the parent of tree[k] is tree[⌊k/2⌋], and its children
are tree[2k] and tree[2k+1]. Note that this implies that the position of a node
is even if it is a left child and odd if it is a right child.

The following function calculates the value of sumq(a,b):

def sum(a, b):

a += n

b += n

s = 0

while (a <= b) :

if (a%2 == 1):

s += tree[a++]

if (b%2 == 0):

s += tree[b--]

a /= 2

b /= 2

return s

The function maintains a range that is initially [a+n,b+n]. Then, at each step,
the range is moved one level higher in the tree, and before that, the values of the
nodes that do not belong to the higher range are added to the sum.

The following function increases the array value at position k by x:

add(k, x) {

k += n

tree[k] += x

k /= 2

while (k >= 1):

tree[k] = tree[2*k]+tree[2*k+1]

First the function updates the value at the bottom level of the tree. After this,
the function updates the values of all internal tree nodes, until it reaches the top
node of the tree.

71

Both the above functions work in O(logn) time, because a segment tree of n
elements consists of O(logn) levels, and the functions move one level higher in
the tree at each step.

Other queries

Segment trees can support all range queries where it is possible to divide a range
into two parts, calculate the answer separately for both parts and then efficiently
combine the answers. Examples of such queries are minimum and maximum,
greatest common divisor, and bit operations and, or and xor.

For example, the following segment tree supports minimum queries:

5 8 6 3 1 7 2 6

5 3 1 2

3 1

1

In this case, every tree node contains the smallest value in the corresponding
array range. The top node of the tree contains the smallest value in the whole
array. The operations can be implemented like previously, but instead of sums,
minima are calculated.

The structure of a segment tree also allows us to use binary search for locating
array elements. For example, if the tree supports minimum queries, we can find
the position of an element with the smallest value in O(logn) time.

For example, in the above tree, an element with the smallest value 1 can be
found by traversing a path downwards from the top node:

5 8 6 3 1 7 2 6

5 3 1 2

3 1

1

72

9.4 Additional techniques

Index compression

A limitation in data structures that are built upon an array is that the elements
are indexed using consecutive integers. Difficulties arise when large indices are
needed. For example, if we wish to use the index 109, the array should contain
109 elements which would require too much memory.

However, we can often bypass this limitation by using index compression,
where the original indices are replaced with indices 1,2,3, etc. This can be done
if we know all the indices needed during the algorithm beforehand.

The idea is to replace each original index x with c(x) where c is a function that
compresses the indices. We require that the order of the indices does not change,
so if a < b, then c(a)< c(b). This allows us to conveniently perform queries even
if the indices are compressed.

For example, if the original indices are 555, 109 and 8, the new indices are:

c(8) = 1
c(555) = 2
c(109) = 3

Range updates

So far, we have implemented data structures that support range queries and
updates of single values. Let us now consider an opposite situation, where we
should update ranges and retrieve single values. We focus on an operation that
increases all elements in a range [a,b] by x.

Surprisingly, we can use the data structures presented in this chapter also in
this situation. To do this, we build a difference array whose values indicate the
differences between consecutive values in the original array. Thus, the original
array is the prefix sum array of the difference array. For example, consider the
following array:

3 3 1 1 1 5 2 2

0 1 2 3 4 5 6 7

The difference array for the above array is as follows:

3 0 −2 0 0 4 −3 0

0 1 2 3 4 5 6 7

For example, the value 2 at position 6 in the original array corresponds to the
sum 3−2+4−3= 2 in the difference array.

The advantage of the difference array is that we can update a range in the
original array by changing just two elements in the difference array. For example,
if we want to increase the original array values between positions 1 and 4 by 5, it
suffices to increase the difference array value at position 1 by 5 and decrease the
value at position 5 by 5. The result is as follows:

73

3 5 −2 0 0 −1 −3 0

0 1 2 3 4 5 6 7

More generally, to increase the values in range [a,b] by x, we increase the
value at position a by x and decrease the value at position b+1 by x. Thus, it is
only needed to update single values and process sum queries, so we can use a
binary indexed tree or a segment tree.

A more difficult problem is to support both range queries and range updates.
In Chapter 28 we will see that even this is possible.

74

Chapter 11

Basics of graphs

Many programming problems can be solved by modeling the problem as a graph
problem and using an appropriate graph algorithm. A typical example of a graph
is a network of roads and cities in a country. Sometimes, though, the graph is
hidden in the problem and it may be difficult to detect it.

This part of the book discusses graph algorithms, especially focusing on topics
that are important in competitive programming. In this chapter, we go through
concepts related to graphs, and study different ways to represent graphs in
algorithms.

11.1 Graph terminology

A graph consists of nodes and edges. In this book, the variable n denotes the
number of nodes in a graph, and the variable m denotes the number of edges.
The nodes are numbered using integers 1,2, . . . ,n.

For example, the following graph consists of 5 nodes and 7 edges:

1 2

3 4

5

A path leads from node a to node b through edges of the graph. The length
of a path is the number of edges in it. For example, the above graph contains a
path 1→ 3→ 4→ 5 of length 3 from node 1 to node 5:

1 2

3 4

5

A path is a cycle if the first and last node is the same. For example, the above
graph contains a cycle 1→ 3→ 4→ 1. A path is simple if each node appears at
most once in the path.

75

Connectivity

A graph is connected if there is a path between any two nodes. For example,
the following graph is connected:

1 2

3 4

The following graph is not connected, because it is not possible to get from
node 4 to any other node:

1 2

3 4

The connected parts of a graph are called its components. For example, the
following graph contains three components: {1, 2, 3}, {4, 5, 6, 7} and {8}.

1 2

3 6 7

4 5

8

A tree is a connected graph that consists of n nodes and n−1 edges. There is
a unique path between any two nodes of a tree. For example, the following graph
is a tree:

1 2

3 4

5

Edge directions

A graph is directed if the edges can be traversed in one direction only. For
example, the following graph is directed:

1 2

3 4

5

The above graph contains a path 3 → 1 → 2 → 5 from node 3 to node 5, but
there is no path from node 5 to node 3.

76

Edge weights

In a weighted graph, each edge is assigned a weight. The weights are often
interpreted as edge lengths. For example, the following graph is weighted:

1 2

3 4

5

5

1

7

6

7

3

The length of a path in a weighted graph is the sum of the edge weights on
the path. For example, in the above graph, the length of the path 1→ 2→ 5 is 12,
and the length of the path 1→ 3→ 4→ 5 is 11. The latter path is the shortest
path from node 1 to node 5.

Neighbors and degrees

Two nodes are neighbors or adjacent if there is an edge between them. The
degree of a node is the number of its neighbors. For example, in the following
graph, the neighbors of node 2 are 1, 4 and 5, so its degree is 3.

1 2

3 4

5

The sum of degrees in a graph is always 2m, where m is the number of edges,
because each edge increases the degree of exactly two nodes by one. For this
reason, the sum of degrees is always even.

A graph is regular if the degree of every node is a constant d. A graph is
complete if the degree of every node is n−1, i.e., the graph contains all possible
edges between the nodes.

In a directed graph, the indegree of a node is the number of edges that end
at the node, and the outdegree of a node is the number of edges that start at
the node. For example, in the following graph, the indegree of node 2 is 2, and
the outdegree of node 2 is 1.

1 2

3 4

5

77

Colorings

In a coloring of a graph, each node is assigned a color so that no adjacent nodes
have the same color.

A graph is bipartite if it is possible to color it using two colors. It turns out
that a graph is bipartite exactly when it does not contain a cycle with an odd
number of edges. For example, the graph

2 3

5 64

1

is bipartite, because it can be colored as follows:

2 3

5 64

1

However, the graph

2 3

5 64

1

is not bipartite, because it is not possible to color the following cycle of three
nodes using two colors:

2 3

5 64

1

Simplicity

A graph is simple if no edge starts and ends at the same node, and there are no
multiple edges between two nodes. Often we assume that graphs are simple. For
example, the following graph is not simple:

2 3

5 64

1

78

11.2 Graph representation

There are several ways to represent graphs in algorithms. The choice of a data
structure depends on the size of the graph and the way the algorithm processes
it. Next we will go through three common representations.

Adjacency list representation

In the adjacency list representation, each node x in the graph is assigned an
adjacency list that consists of nodes to which there is an edge from x. Adjacency
lists are the most popular way to represent graphs, and most algorithms can be
efficiently implemented using them.

A convenient way to store the adjacency lists is to declare a list of lists as
follows:

adj = [[] for i in range(N)]

The constant n is chosen so that all adjacency lists can be stored. Typically, it is
enough to have N = n+1 if the vertices1. For example, the graph

1 2 3

4

can be stored as follows:

adj[1].append(2)

adj[2].append(3)

adj[2].append(4)

adj[3].append(4)

adj[4].append(1)

If the graph is undirected, it can be stored in a similar way, but each edge is
added in both directions.

For a weighted graph, the structure can be extended to store pairs instead of
integers. In this case, the adjacency list of node a contains the pair (b,w) always
when there is an edge from node a to node b with weight w. For example, the
graph

1 2 3

4

5 7

6 52

1If the vertices in your graph is enumerated from 0 to n−1, then you can just use N = n.

79

can be stored as follows:

adj[1].append((2,5))

adj[2].append((3,7))

adj[2].append((4,6))

adj[3].append((4,5))

adj[4].append((1,2))

The benefit of using adjacency lists is that we can efficiently find the nodes
to which we can move from a given node through an edge. For example, the
following loop goes through all nodes to which we can move from node s:

for u in adj[s]:

process node u

Adjacency matrix representation

An adjacency matrix is a two-dimensional array that indicates which edges the
graph contains. We can efficiently check from an adjacency matrix if there is an
edge between two nodes. The matrix can be stored as a list of lists

// Initialize adjacency matrix with 0’s

adj = [[0]*N for i in range(N)]

where each value adj[a][b] indicates whether the graph contains an edge from
node a to node b. If the edge is included in the graph, then adj[a][b] = 1, and
otherwise adj[a][b]= 0. For example, the graph

1 2 3

4

can be represented as follows:

1 0 0 0

0 0 0 1

0 0 1 1

0 1 0 0

4

3

2

1

1 2 3 4

If the graph is weighted, the adjacency matrix representation can be extended
so that the matrix contains the weight of the edge if the edge exists. Using this
representation, the graph

80

1 2 3

4

5 7

6 52

corresponds to the following matrix:

2 0 0 0

0 0 0 5

0 0 7 6

0 5 0 0

4

3

2

1

1 2 3 4

The drawback of the adjacency matrix representation is that the matrix
contains n2 elements, and usually most of them are zero. For this reason, the
representation cannot be used if the graph is large.

Edge list representation

An edge list contains all edges of a graph in some order. This is a convenient
way to represent a graph if the algorithm processes all edges of the graph and it
is not needed to find edges that start at a given node.

The edge list can be stored in a list

edges = []

where each pair (a,b) denotes that there is an edge from node a to node b. Thus,
the graph

1 2 3

4

can be represented as follows:

edges.append((1,2))

edges.append((2,3))

edges.append((2,4))

edges.append((3,4))

edges.append((4,1))

If the graph is weighted, the structure can be extended to a list of triples. Each
element in this list is of the form (a,b,w), which means that there is an edge
from node a to node b with weight w. For example, the graph

81

1 2 3

4

5 7

6 52

can be represented as follows:

edges.append((1,2,5))

edges.append((2,3,7))

edges.append((2,4,6))

edges.append((3,4,5))

edges.append((4,1,2))

82

Chapter 12

Graph traversal

This chapter discusses two fundamental graph algorithms: depth-first search and
breadth-first search. Both algorithms are given a starting node in the graph, and
they visit all nodes that can be reached from the starting node. The difference in
the algorithms is the order in which they visit the nodes.

12.1 Depth-first search

Depth-first search (DFS) is a straightforward graph traversal technique. The
algorithm begins at a starting node, and proceeds to all other nodes that are
reachable from the starting node using the edges of the graph.

Depth-first search always follows a single path in the graph as long as it
finds new nodes. After this, it returns to previous nodes and begins to explore
other parts of the graph. The algorithm keeps track of visited nodes, so that it
processes each node only once.

Example

Let us consider how depth-first search processes the following graph:

1 2

3

4 5

We may begin the search at any node of the graph; now we will begin the search
at node 1.

The search first proceeds to node 2:

1 2

3

4 5

83

After this, nodes 3 and 5 will be visited:

1 2

3

4 5

The neighbors of node 5 are 2 and 3, but the search has already visited both of
them, so it is time to return to the previous nodes. Also the neighbors of nodes 3
and 2 have been visited, so we next move from node 1 to node 4:

1 2

3

4 5

After this, the search terminates because it has visited all nodes.
The time complexity of depth-first search is O(n+m) where n is the number

of nodes and m is the number of edges, because the algorithm processes each
node and edge a constant number of times.

Implementation

Depth-first search can be conveniently implemented using recursion. The fol-
lowing function dfs begins a depth-first search at a given node. The function
assumes that the graph is stored as adjacency lists in a list.

adj = [[] for i in range(N)]

and also maintains a list

visited = [False for i in range(N)]

that keeps track of the visited nodes. Initially, each list value is false, and when
the search arrives at node s, the value of visited[s] becomes true. The function
can be implemented as follows:

def dfs(s):

if (visited[s]):

return

visited[s] = True

process node s

for u in adj[s]:

dfs(u)

84

12.2 Breadth-first search

Breadth-first search (BFS) visits the nodes in increasing order of their distance
from the starting node. Thus, we can calculate the distance from the starting
node to all other nodes using breadth-first search. However, breadth-first search
is more difficult to implement than depth-first search.

Breadth-first search goes through the nodes one level after another. First the
search explores the nodes whose distance from the starting node is 1, then the
nodes whose distance is 2, and so on. This process continues until all nodes have
been visited.

Example

Let us consider how breadth-first search processes the following graph:

1 2 3

4 5 6

Suppose that the search begins at node 1. First, we process all nodes that can be
reached from node 1 using a single edge:

1 2 3

4 5 6

After this, we proceed to nodes 3 and 5:

1 2 3

4 5 6

Finally, we visit node 6:

1 2 3

4 5 6

85

Now we have calculated the distances from the starting node to all nodes of the
graph. The distances are as follows:

node distance
1 0
2 1
3 2
4 1
5 2
6 3

Like in depth-first search, the time complexity of breadth-first search is
O(n+m), where n is the number of nodes and m is the number of edges.

Implementation

Breadth-first search is more difficult to implement than depth-first search, be-
cause the algorithm visits nodes in different parts of the graph. A typical imple-
mentation is based on a queue that contains nodes. At each step, the next node
in the queue will be processed.

The following code assumes that the graph is stored as adjacency lists and
maintains the following data structures:

from collections import deque

q = deque()

visited = [False for i in range(N)]

distance = [-1 for i in range(N)]

The queue q contains nodes to be processed in increasing order of their
distance. New nodes are always added to the end of the queue, and the node
at the beginning of the queue is the next node to be processed. The list visited
indicates which nodes the search has already visited, and the list distance will
contain the distances from the starting node to all nodes of the graph.

The search can be implemented as follows, starting at node x:

visited[x] = True

distance[x] = 0

q.append(x)

while q:

s = q.popleft()

process node s

for u in adj[s]:

if (visited[u]):

continue

visited[u] = True

distance[u] = distance[s]+1

q.append(u)

86

12.3 Applications

Using the graph traversal algorithms, we can check many properties of graphs.
Usually, both depth-first search and breadth-first search may be used, but in
practice, depth-first search is a better choice, because it is easier to implement.
In the following applications we will assume that the graph is undirected.

Connectivity check

A graph is connected if there is a path between any two nodes of the graph. Thus,
we can check if a graph is connected by starting at an arbitrary node and finding
out if we can reach all other nodes.

For example, in the graph

21

3

54

a depth-first search from node 1 visits the following nodes:

21

3

54

Since the search did not visit all the nodes, we can conclude that the graph
is not connected. In a similar way, we can also find all connected components of
a graph by iterating through the nodes and always starting a new depth-first
search if the current node does not belong to any component yet.

Finding cycles

A graph contains a cycle if during a graph traversal, we find a node whose
neighbor (other than the previous node in the current path) has already been
visited. For example, the graph

21

3

54

contains two cycles and we can find one of them as follows:

87

21

3

54

After moving from node 2 to node 5 we notice that the neighbor 3 of node 5 has
already been visited. Thus, the graph contains a cycle that goes through node 3,
for example, 3→ 2→ 5→ 3.

Another way to find out whether a graph contains a cycle is to simply calculate
the number of nodes and edges in every component. If a component contains c
nodes and no cycle, it must contain exactly c−1 edges (so it has to be a tree). If
there are c or more edges, the component surely contains a cycle.

Bipartiteness check

A graph is bipartite if its nodes can be colored using two colors so that there are
no adjacent nodes with the same color. It is surprisingly easy to check if a graph
is bipartite using graph traversal algorithms.

The idea is to color the starting node blue, all its neighbors red, all their
neighbors blue, and so on. If at some point of the search we notice that two
adjacent nodes have the same color, this means that the graph is not bipartite.
Otherwise the graph is bipartite and one coloring has been found.

For example, the graph

21

3

54

is not bipartite, because a search from node 1 proceeds as follows:

21

3

54

We notice that the color of both nodes 2 and 5 is red, while they are adjacent
nodes in the graph. Thus, the graph is not bipartite.

This algorithm always works, because when there are only two colors avail-
able, the color of the starting node in a component determines the colors of all
other nodes in the component. It does not make any difference whether the
starting node is red or blue.

Note that in the general case, it is difficult to find out if the nodes in a graph
can be colored using k colors so that no adjacent nodes have the same color. Even
when k = 3, no efficient algorithm is known but the problem is NP-hard.

88

Chapter 13

Shortest paths

Finding a shortest path between two nodes of a graph is an important problem
that has many practical applications. For example, a natural problem related to
a road network is to calculate the shortest possible length of a route between two
cities, given the lengths of the roads.

In an unweighted graph, the length of a path equals the number of its edges,
and we can simply use breadth-first search to find a shortest path. However, in
this chapter we focus on weighted graphs where more sophisticated algorithms
are needed for finding shortest paths.

13.1 Bellman–Ford algorithm

The Bellman–Ford algorithm1 finds shortest paths from a starting node to all
nodes of the graph. The algorithm can process all kinds of graphs, provided that
the graph does not contain a cycle with negative length. If the graph contains a
negative cycle, the algorithm can detect this.

The algorithm keeps track of distances from the starting node to all nodes
of the graph. Initially, the distance to the starting node is 0 and the distance to
all other nodes in infinite. The algorithm reduces the distances by finding edges
that shorten the paths until it is not possible to reduce any distance.

Example

Let us consider how the Bellman–Ford algorithm works in the following graph:

1 2

3 4

6

0 ∞

∞ ∞

∞

5

3

1

3

2

2

7

1The algorithm is named after R. E. Bellman and L. R. Ford who published it independently
in 1958 and 1956, respectively [3, 15].

89

Each node of the graph is assigned a distance. Initially, the distance to the
starting node is 0, and the distance to all other nodes is infinite.

The algorithm searches for edges that reduce distances. First, all edges from
node 1 reduce distances:

1 2

3 4

5

0 5

3 7

∞

5

3

1

3

2

2

7

After this, edges 2→ 5 and 3→ 4 reduce distances:

1 2

3 4

5

0 5

3 4

7

5

3

1

3

2

2

7

Finally, there is one more change:

1 2

3 4

5

0 5

3 4

6

5

3

1

3

2

2

7

After this, no edge can reduce any distance. This means that the distances
are final, and we have successfully calculated the shortest distances from the
starting node to all nodes of the graph.

For example, the shortest distance 3 from node 1 to node 5 corresponds to the
following path:

1 2

3 4

5

0 5

3 4

6

5

3

1

3

2

2

7

90

Implementation

The following implementation of the Bellman–Ford algorithm determines the
shortest distances from a node x to all nodes of the graph. The code assumes
that the graph is stored as an edge list edges that consists of tuples of the form
(a,b,w), meaning that there is an edge from node a to node b with weight w.

The algorithm consists of n−1 rounds, and on each round the algorithm goes
through all edges of the graph and tries to reduce the distances. The algorithm
constructs an list distance that will contain the distances from x to all nodes of
the graph. The constant INF denotes an infinite distance.

distance = [INF]*N

distance[x] = 0;

for i in range(n-1):

for (a, b, w) in edges:

distance[b] = min(distance[b], distance[a] + w)

The time complexity of the algorithm is O(nm), because the algorithm consists
of n−1 rounds and iterates through all m edges during a round. If there are no
negative cycles in the graph, all distances are final after n−1 rounds, because
each shortest path can contain at most n−1 edges.

In practice, the final distances can usually be found faster than in n−1 rounds.
Thus, a possible way to make the algorithm more efficient is to stop the algorithm
if no distance can be reduced during a round.

Negative cycles

The Bellman–Ford algorithm can also be used to check if the graph contains a
cycle with negative length. For example, the graph

1

2

3

4

3 1

5 −7

2

contains a negative cycle 2→ 3→ 4→ 2 with length −4.
If the graph contains a negative cycle, we can shorten infinitely many times

any path that contains the cycle by repeating the cycle again and again. Thus,
the concept of a shortest path is not meaningful in this situation.

A negative cycle can be detected using the Bellman–Ford algorithm by running
the algorithm for n rounds. If the last round reduces any distance, the graph
contains a negative cycle. Note that this algorithm can be used to search for a
negative cycle in the whole graph regardless of the starting node.

91

SPFA algorithm

The SPFA algorithm (”Shortest Path Faster Algorithm”) [11] is a variant of the
Bellman–Ford algorithm, that is often more efficient than the original algorithm.
The SPFA algorithm does not go through all the edges on each round, but instead,
it chooses the edges to be examined in a more intelligent way.

The algorithm maintains a queue of nodes that might be used for reducing
the distances. First, the algorithm adds the starting node x to the queue. Then,
the algorithm always processes the first node in the queue, and when an edge
a → b reduces a distance, node b is added to the queue.

The efficiency of the SPFA algorithm depends on the structure of the graph:
the algorithm is often efficient, but its worst case time complexity is still O(nm)
and it is possible to create inputs that make the algorithm as slow as the original
Bellman–Ford algorithm.

13.2 Dijkstra’s algorithm

Dijkstra’s algorithm2 finds shortest paths from the starting node to all nodes of
the graph, like the Bellman–Ford algorithm. The benefit of Dijsktra’s algorithm
is that it is more efficient and can be used for processing large graphs. However,
the algorithm requires that there are no negative weight edges in the graph.

Like the Bellman–Ford algorithm, Dijkstra’s algorithm maintains distances
to the nodes and reduces them during the search. Dijkstra’s algorithm is efficient,
because it only processes each edge in the graph once, using the fact that there
are no negative edges.

Example

Let us consider how Dijkstra’s algorithm works in the following graph when the
starting node is node 1:

3 4

2 1

5

∞ ∞

∞ 0

∞

6

2

5

9

2

1

Like in the Bellman–Ford algorithm, initially the distance to the starting node is
0 and the distance to all other nodes is infinite.

At each step, Dijkstra’s algorithm selects a node that has not been processed
yet and whose distance is as small as possible. The first such node is node 1 with
distance 0.

2E. W. Dijkstra published the algorithm in 1959 [8]; however, his original paper does not
mention how to implement the algorithm efficiently.

92

When a node is selected, the algorithm goes through all edges that start at
the node and reduces the distances using them:

3 4

2 1

5

∞ 9

5 0

1

6

2

5

9

2

1

In this case, the edges from node 1 reduced the distances of nodes 2, 4 and 5,
whose distances are now 5, 9 and 1.

The next node to be processed is node 5 with distance 1. This reduces the
distance to node 4 from 9 to 3:

3 4

2 1

5

∞ 3

5 0

1

6

2

5

9

2

1

After this, the next node is node 4, which reduces the distance to node 3 to 9:

3 4

2 1

5

9 3

5 0

1

6

2

5

9

2

1

A remarkable property in Dijkstra’s algorithm is that whenever a node is
selected, its distance is final. For example, at this point of the algorithm, the
distances 0, 1 and 3 are the final distances to nodes 1, 5 and 4.

After this, the algorithm processes the two remaining nodes, and the final
distances are as follows:

3 4

2 1

5

7 3

5 0

1

6

2

5

9

2

1

93

Negative edges

The efficiency of Dijkstra’s algorithm is based on the fact that the graph does
not contain negative edges. If there is a negative edge, the algorithm may give
incorrect results. As an example, consider the following graph:

1

2

3

4

2 3

6 −5

The shortest path from node 1 to node 4 is 1→ 3→ 4 and its length is 1. However,
Dijkstra’s algorithm finds the path 1→ 2→ 4 by following the minimum weight
edges. The algorithm does not take into account that on the other path, the
weight −5 compensates the previous large weight 6.

Implementation

The following implementation of Dijkstra’s algorithm calculates the minimum
distances from a node x to other nodes of the graph. The graph is stored as
adjacency lists so that adj[a] contains a pair (b,w) always when there is an edge
from node a to node b with weight w.

An efficient implementation of Dijkstra’s algorithm requires that it is possible
to efficiently find the minimum distance node that has not been processed. An
appropriate data structure for this is a priority queue that contains the nodes
ordered by their distances. Using a priority queue, the next node to be processed
can be retrieved in logarithmic time.

In the following code, the priority queue q contains pairs of the form (d, x),
meaning that the current distance to node x is d. The list distance contains the
distance to each node, and the list processed indicates whether a node has been
processed. Initially the distance is 0 to x and ∞ to all other nodes.

import heapq

processed = [False]*N

distance = [INF]*N

distance[x] = 0

q = []

heapq.heappush(q, (0,x))

while (len(q) > 0):

d, a = heapq.heappop(q)

if (processed[a]):

continue

processed[a] = true

for (b,w) in adj[a]:

if (distance[a] + w < distance[b]):

distance[b] = distance[a] + w

heapq.heappush(q,(distance[b],b))

94

Note that there may be several instances of the same node in the priority
queue; however, only the instance with the minimum distance will be processed.

The time complexity of the above implementation is O(n+m logm), because
the algorithm goes through all nodes of the graph and adds for each edge at most
one distance to the priority queue.

13.3 Floyd–Warshall algorithm

The Floyd–Warshall algorithm3 provides an alternative way to approach the
problem of finding shortest paths. Unlike the other algorithms of this chapter, it
finds all shortest paths between the nodes in a single run.

The algorithm maintains a two-dimensional list that contains distances be-
tween the nodes. First, distances are calculated only using direct edges between
the nodes, and after this, the algorithm reduces distances by using intermediate
nodes in paths.

Example

Let us consider how the Floyd–Warshall algorithm works in the following graph:

3 4

2 1

5

7

2

5

9

2

1

Initially, the distance from each node to itself is 0, and the distance between
nodes a and b is x if there is an edge between nodes a and b with weight x. All
other distances are infinite.

In this graph, the initial list is as follows:

1 2 3 4 5
1 0 5 ∞ 9 1
2 5 0 2 ∞ ∞
3 ∞ 2 0 7 ∞
4 9 ∞ 7 0 2
5 1 ∞ ∞ 2 0

The algorithm consists of consecutive rounds. On each round, the algorithm
selects a new node that can act as an intermediate node in paths from now on,
and distances are reduced using this node.

On the first round, node 1 is the new intermediate node. There is a new path
between nodes 2 and 4 with length 14, because node 1 connects them. There is
also a new path between nodes 2 and 5 with length 6.

3The algorithm is named after R. W. Floyd and S. Warshall who published it independently in
1962 [14, 35].

95

1 2 3 4 5
1 0 5 ∞ 9 1
2 5 0 2 14 6
3 ∞ 2 0 7 ∞
4 9 14 7 0 2
5 1 6 ∞ 2 0

On the second round, node 2 is the new intermediate node. This creates new
paths between nodes 1 and 3 and between nodes 3 and 5:

1 2 3 4 5
1 0 5 7 9 1
2 5 0 2 14 6
3 7 2 0 7 8
4 9 14 7 0 2
5 1 6 8 2 0

On the third round, node 3 is the new intermediate round. There is a new
path between nodes 2 and 4:

1 2 3 4 5
1 0 5 7 9 1
2 5 0 2 9 6
3 7 2 0 7 8
4 9 9 7 0 2
5 1 6 8 2 0

The algorithm continues like this, until all nodes have been appointed inter-
mediate nodes. After the algorithm has finished, the list contains the minimum
distances between any two nodes:

1 2 3 4 5
1 0 5 7 3 1
2 5 0 2 8 6
3 7 2 0 7 8
4 3 8 7 0 2
5 1 6 8 2 0

For example, the list tells us that the shortest distance between nodes 2 and
4 is 8. This corresponds to the following path:

3 4

2 1

5

7

2

5

9

2

1

96

Implementation

The advantage of the Floyd–Warshall algorithm that it is easy to implement. The
following code constructs a distance matrix where distance[a][b] is the shortest
distance between nodes a and b. First, the algorithm initializes distance using
the adjacency matrix adj of the graph:

for i in range(1,n+1):

for j in range(1,n+1):

if (i == j):

distance[i][j] = 0

elif (adj[i][j] > 0):

distance[i][j] = adj[i][j]

else:

distance[i][j] = INF

After this, the shortest distances can be found as follows:

for k in range(1,n+1):

for i in range(1,n+1):

for j in range(1,n+1):

distance[i][j] = min(distance[i][j], \

distance[i][k]+distance[k][j])

The time complexity of the algorithm is O(n3), because it contains three
nested loops that go through the nodes of the graph.

Since the implementation of the Floyd–Warshall algorithm is simple, the
algorithm can be a good choice even if it is only needed to find a single shortest
path in the graph. However, the algorithm can only be used when the graph is so
small that a cubic time complexity is fast enough.

97

98

Chapter 14

Tree algorithms

A tree is a connected, acyclic graph that consists of n nodes and n−1 edges.
Removing any edge from a tree divides it into two components, and adding any
edge to a tree creates a cycle. Moreover, there is always a unique path between
any two nodes of a tree.

For example, the following tree consists of 8 nodes and 7 edges:

1 4

2 3 7

5

68

The leaves of a tree are the nodes with degree 1, i.e., with only one neighbor.
For example, the leaves of the above tree are nodes 3, 5, 7 and 8.

In a rooted tree, one of the nodes is appointed the root of the tree, and all
other nodes are placed underneath the root. For example, in the following tree,
node 1 is the root node.

1

42 3

75 6

8

In a rooted tree, the children of a node are its lower neighbors, and the
parent of a node is its upper neighbor. Each node has exactly one parent, except
for the root that does not have a parent. For example, in the above tree, the
children of node 2 are nodes 5 and 6, and its parent is node 1.

99

The structure of a rooted tree is recursive: each node of the tree acts as the
root of a subtree that contains the node itself and all nodes that are in the
subtrees of its children. For example, in the above tree, the subtree of node 2
consists of nodes 2, 5, 6 and 8:

2

5 6

8

14.1 Tree traversal

General graph traversal algorithms can be used to traverse the nodes of a tree.
However, the traversal of a tree is easier to implement than that of a general
graph, because there are no cycles in the tree and it is not possible to reach a
node from multiple directions.

The typical way to traverse a tree is to start a depth-first search at an arbitrary
node. The following recursive function can be used:

def dfs(s, e) {

// process node s

for u in adj[s]:

if (u != e):

dfs(u, s)

The function is given two parameters: the current node s and the previous
node e. The purpose of the parameter e is to make sure that the search only
moves to nodes that have not been visited yet.

The following function call starts the search at node x:

dfs(x, 0);

In the first call e = 0, because there is no previous node, and it is allowed to
proceed to any direction in the tree.

Dynamic programming

Dynamic programming can be used to calculate some information during a tree
traversal. Using dynamic programming, we can, for example, calculate in O(n)
time for each node of a rooted tree the number of nodes in its subtree or the
length of the longest path from the node to a leaf.

100

As an example, let us calculate for each node s a value count[s]: the number
of nodes in its subtree. The subtree contains the node itself and all nodes in
the subtrees of its children, so we can calculate the number of nodes recursively
using the following code:

def dfs(s, e) {

count[s] = 1

for u in adj[s]:

if (u == e):

continue

dfs(u, s)

count[s] += count[u]

14.2 Diameter

The diameter of a tree is the maximum length of a path between two nodes. For
example, consider the following tree:

1 4

2 3 7

5

6

The diameter of this tree is 4, which corresponds to the following path:

1 4

2 3 7

5

6

Note that there may be several maximum-length paths. In the above path, we
could replace node 6 with node 5 to obtain another path with length 4.

Next we will discuss two O(n) time algorithms for calculating the diameter
of a tree. The first algorithm is based on dynamic programming, and the second
algorithm uses two depth-first searches.

Algorithm 1

A general way to approach many tree problems is to first root the tree arbitrarily.
After this, we can try to solve the problem separately for each subtree. Our first
algorithm for calculating the diameter is based on this idea.

An important observation is that every path in a rooted tree has a highest
point: the highest node that belongs to the path. Thus, we can calculate for each
node the length of the longest path whose highest point is the node. One of those
paths corresponds to the diameter of the tree.

101

For example, in the following tree, node 1 is the highest point on the path
that corresponds to the diameter:

1

42 3

75 6

We calculate for each node x two values:

• toLeaf(x): the maximum length of a path from x to any leaf

• maxLength(x): the maximum length of a path whose highest point is x

For example, in the above tree, toLeaf(1)= 2, because there is a path 1→ 2→ 6,
and maxLength(1) = 4, because there is a path 6 → 2 → 1 → 4 → 7. In this case,
maxLength(1) equals the diameter.

Dynamic programming can be used to calculate the above values for all nodes
in O(n) time. First, to calculate toLeaf(x), we go through the children of x,
choose a child c with maximum toLeaf(c) and add one to this value. Then, to
calculate maxLength(x), we choose two distinct children a and b such that the sum
toLeaf(a)+toLeaf(b) is maximum and add two to this sum.

Algorithm 2

Another efficient way to calculate the diameter of a tree is based on two depth-
first searches. First, we choose an arbitrary node a in the tree and find the
farthest node b from a. Then, we find the farthest node c from b. The diameter
of the tree is the distance between b and c.

In the following graph, a, b and c could be:

1 4

2 3 7

5

6
ab c

This is an elegant method, but why does it work?
It helps to draw the tree differently so that the path that corresponds to the

diameter is horizontal, and all other nodes hang from it:

102

1 42

3

7

5

6

a

b cx

Node x indicates the place where the path from node a joins the path that
corresponds to the diameter. The farthest node from a is node b, node c or some
other node that is at least as far from node x. Thus, this node is always a valid
choice for an endpoint of a path that corresponds to the diameter.

14.3 All longest paths

Our next problem is to calculate for every node in the tree the maximum length
of a path that begins at the node. This can be seen as a generalization of the tree
diameter problem, because the largest of those lengths equals the diameter of
the tree. Also this problem can be solved in O(n) time.

As an example, consider the following tree:

1

4

2

3

6

5

Let maxLength(x) denote the maximum length of a path that begins at node
x. For example, in the above tree, maxLength(4) = 3, because there is a path
4→ 1→ 2→ 6. Here is a complete table of the values:

node x 1 2 3 4 5 6
maxLength(x) 2 2 3 3 3 3

Also in this problem, a good starting point for solving the problem is to root
the tree arbitrarily:

1

42 3

5 6

The first part of the problem is to calculate for every node x the maximum
length of a path that goes through a child of x. For example, the longest path
from node 1 goes through its child 2:

103

1

42 3

5 6

This part is easy to solve in O(n) time, because we can use dynamic programming
as we have done previously.

Then, the second part of the problem is to calculate for every node x the
maximum length of a path through its parent p. For example, the longest path
from node 3 goes through its parent 1:

1

42 3

5 6

At first glance, it seems that we should choose the longest path from p.
However, this does not always work, because the longest path from p may go
through x. Here is an example of this situation:

1

42 3

5 6

Still, we can solve the second part in O(n) time by storing two maximum
lengths for each node x:

• maxLength1(x): the maximum length of a path from x

• maxLength2(x) the maximum length of a path from x in another direction
than the first path

For example, in the above graph, maxLength1(1)= 2 using the path 1→ 2→ 5, and
maxLength2(1)= 1 using the path 1→ 3.

Finally, if the path that corresponds to maxLength1(p) goes through x, we con-
clude that the maximum length is maxLength2(p)+1, and otherwise the maximum
length is maxLength1(p)+1.

104

14.4 Binary trees

A binary tree is a rooted tree where each node has a left and right subtree. It is
possible that a subtree of a node is empty. Thus, every node in a binary tree has
zero, one or two children.

For example, the following tree is a binary tree:

1

2 3

4 5

6

7

The nodes of a binary tree have three natural orderings that correspond to
different ways to recursively traverse the tree:

• pre-order: first process the root, then traverse the left subtree, then
traverse the right subtree

• in-order: first traverse the left subtree, then process the root, then traverse
the right subtree

• post-order: first traverse the left subtree, then traverse the right subtree,
then process the root

For the above tree, the nodes in pre-order are [1,2,4,5,6,3,7], in in-order
[4,2,6,5,1,3,7] and in post-order [4,6,5,2,7,3,1].

If we know the pre-order and in-order of a tree, we can reconstruct the exact
structure of the tree. For example, the above tree is the only possible tree with
pre-order [1,2,4,5,6,3,7] and in-order [4,2,6,5,1,3,7]. In a similar way, the
post-order and in-order also determine the structure of a tree.

However, the situation is different if we only know the pre-order and post-
order of a tree. In this case, there may be more than one tree that match the
orderings. For example, in both of the trees

1

2

1

2

the pre-order is [1,2] and the post-order is [2,1], but the structures of the trees
are different.

105

106

Chapter 15

Spanning trees

A spanning tree of a graph consists of all nodes of the graph and some of the
edges of the graph so that there is a path between any two nodes. Like trees
in general, spanning trees are connected and acyclic. Usually there are several
ways to construct a spanning tree.

For example, consider the following graph:

1

2 3

4

5 6

3
5

9

5
2

7

6 3

One spanning tree for the graph is as follows:

1

2 3

4

5 6

3
5

9

2

3

The weight of a spanning tree is the sum of its edge weights. For example,
the weight of the above spanning tree is 3+5+9+3+2= 22.

A minimum spanning tree is a spanning tree whose weight is as small as
possible. The weight of a minimum spanning tree for the example graph is 20,
and such a tree can be constructed as follows:

1

2 3

4

5 6

3

5
2

7

3

107

In a similar way, a maximum spanning tree is a spanning tree whose
weight is as large as possible. The weight of a maximum spanning tree for the
example graph is 32:

1

2 3

4

5 6

5
9

5 7

6

Note that a graph may have several minimum and maximum spanning trees,
so the trees are not unique.

It turns out that several greedy methods can be used to construct minimum
and maximum spanning trees. In this chapter, we discuss two algorithms that
process the edges of the graph ordered by their weights. We focus on finding
minimum spanning trees, but the same algorithms can find maximum spanning
trees by processing the edges in reverse order.

15.1 Kruskal’s algorithm

In Kruskal’s algorithm1, the initial spanning tree only contains the nodes of
the graph and does not contain any edges. Then the algorithm goes through the
edges ordered by their weights, and always adds an edge to the tree if it does not
create a cycle.

The algorithm maintains the components of the tree. Initially, each node of
the graph belongs to a separate component. Always when an edge is added to the
tree, two components are joined. Finally, all nodes belong to the same component,
and a minimum spanning tree has been found.

Example

Let us consider how Kruskal’s algorithm processes the following graph:

1

2 3

4

5 6

3
5

9

5
2

7

6 3

The first step of the algorithm is to sort the edges in increasing order of their
weights. The result is the following list:

1The algorithm was published in 1956 by J. B. Kruskal [24].

108

edge weight
5–6 2
1–2 3
3–6 3
1–5 5
2–3 5
2–5 6
4–6 7
3–4 9

After this, the algorithm goes through the list and adds each edge to the tree
if it joins two separate components.

Initially, each node is in its own component:

1

2 3

4

5 6

The first edge to be added to the tree is the edge 5–6 that creates a component
{5,6} by joining the components {5} and {6}:

1

2 3

4

5 6
2

After this, the edges 1–2, 3–6 and 1–5 are added in a similar way:

1

2 3

4

5 6

3

5
2

3

After those steps, most components have been joined and there are two
components in the tree: {1,2,3,5,6} and {4}.

The next edge in the list is the edge 2–3, but it will not be included in the tree,
because nodes 2 and 3 are already in the same component. For the same reason,
the edge 2–5 will not be included in the tree.

109

Finally, the edge 4–6 will be included in the tree:

1

2 3

4

5 6

3

5
2

7

3

After this, the algorithm will not add any new edges, because the graph is
connected and there is a path between any two nodes. The resulting graph is a
minimum spanning tree with weight 2+3+3+5+7= 20.

Why does this work?

It is a good question why Kruskal’s algorithm works. Why does the greedy
strategy guarantee that we will find a minimum spanning tree?

Let us see what happens if the minimum weight edge of the graph is not
included in the spanning tree. For example, suppose that a spanning tree for the
previous graph would not contain the minimum weight edge 5–6. We do not know
the exact structure of such a spanning tree, but in any case it has to contain some
edges. Assume that the tree would be as follows:

1

2 3

4

5 6

However, it is not possible that the above tree would be a minimum spanning
tree for the graph. The reason for this is that we can remove an edge from the
tree and replace it with the minimum weight edge 5–6. This produces a spanning
tree whose weight is smaller:

1

2 3

4

5 6
2

For this reason, it is always optimal to include the minimum weight edge in
the tree to produce a minimum spanning tree. Using a similar argument, we
can show that it is also optimal to add the next edge in weight order to the tree,
and so on. Hence, Kruskal’s algorithm works correctly and always produces a
minimum spanning tree.

110

Implementation

When implementing Kruskal’s algorithm, it is convenient to use the edge list
representation of the graph. The first phase of the algorithm sorts the edges in
the list in O(m logm) time. After this, the second phase of the algorithm builds
the minimum spanning tree as follows:

for (...):

if (!same(a,b)) unite(a,b)

The loop goes through the edges in the list and always processes an edge
a–b where a and b are two nodes. Two functions are needed: the function same

determines if a and b are in the same component, and the function unite joins
the components that contain a and b.

The problem is how to efficiently implement the functions same and unite.
One possibility is to implement the function same as a graph traversal and check
if we can get from node a to node b. However, the time complexity of such a
function would be O(n+m) and the resulting algorithm would be slow, because
the function same will be called for each edge in the graph.

We will solve the problem using a union-find structure that implements both
functions in O(logn) time. Thus, the time complexity of Kruskal’s algorithm will
be O(m logn) after sorting the edge list.

15.2 Union-find structure

A union-find structure maintains a collection of sets. The sets are disjoint,
so no element belongs to more than one set. Two O(logn) time operations are
supported: the unite operation joins two sets, and the find operation finds the
representative of the set that contains a given element2.

Structure

In a union-find structure, one element in each set is the representative of the set,
and there is a chain from any other element of the set to the representative. For
example, assume that the sets are {1,4,7}, {5} and {2,3,6,8}:

1

2

3

4 5

6

7

8

2The structure presented here was introduced in 1971 by J. D. Hopcroft and J. D. Ullman [18].
Later, in 1975, R. E. Tarjan studied a more sophisticated variant of the structure [31] that is
discussed in many algorithm textbooks nowadays.

111

In this case the representatives of the sets are 4, 5 and 2. We can find the
representative of any element by following the chain that begins at the element.
For example, the element 2 is the representative for the element 6, because we
follow the chain 6→ 3→ 2. Two elements belong to the same set exactly when
their representatives are the same.

Two sets can be joined by connecting the representative of one set to the
representative of the other set. For example, the sets {1,4,7} and {2,3,6,8} can be
joined as follows:

1

2

3

4

6

7

8

The resulting set contains the elements {1,2,3,4,6,7,8}. From this on, the
element 2 is the representative for the entire set and the old representative 4
points to the element 2.

The efficiency of the union-find structure depends on how the sets are joined.
It turns out that we can follow a simple strategy: always connect the representa-
tive of the smaller set to the representative of the larger set (or if the sets are
of equal size, we can make an arbitrary choice). Using this strategy, the length
of any chain will be O(logn), so we can find the representative of any element
efficiently by following the corresponding chain.

Implementation

The union-find structure can be implemented using lists. In the following imple-
mentation, the list link contains for each element the next element in the chain
or the element itself if it is a representative, and the list size indicates for each
representative the size of the corresponding set.

Initially, each element belongs to a separate set:

link = [i for i in range(n)]

size = [1 for i in range(n)]

The function find returns the representative for an element x. The represen-
tative can be found by following the chain that begins at x.

def find(x):

while (x != link[x]):

x = link[x]

return x

The function same checks whether elements a and b belong to the same set.
This can easily be done by using the function find:

112

def same(a, b):

return (find(a) == find(b))

The function unite joins the sets that contain elements a and b (the elements
have to be in different sets). The function first finds the representatives of the
sets and then connects the smaller set to the larger set.

def unite(int a, int b):

global size, link

a = find(a)

b = find(b)

if (size[a] > size[b]):

size[a] += size[b]

link[b] = a

else:

size[b] += size[a]

link[a] = b

The time complexity of the function find is O(logn) assuming that the length of
each chain is O(logn). In this case, the functions same and unite also work in
O(logn) time. The function unite makes sure that the length of each chain is
O(logn) by connecting the smaller set to the larger set.

15.3 Prim’s algorithm

Prim’s algorithm3 is an alternative method for finding a minimum spanning
tree. The algorithm first adds an arbitrary node to the tree. After this, the
algorithm always chooses a minimum-weight edge that adds a new node to the
tree. Finally, all nodes have been added to the tree and a minimum spanning
tree has been found.

Prim’s algorithm resembles Dijkstra’s algorithm. The difference is that Dijk-
stra’s algorithm always selects an edge whose distance from the starting node is
minimum, but Prim’s algorithm simply selects the minimum weight edge that
adds a new node to the tree.

Example

Let us consider how Prim’s algorithm works in the following graph:

3The algorithm is named after R. C. Prim who published it in 1957 [27]. However, the same
algorithm was discovered already in 1930 by V. Jarník.

113

1

2 3

4

5 6

3
5

9

5
2

7

6 3

Initially, there are no edges between the nodes:

1

2 3

4

5 6

An arbitrary node can be the starting node, so let us choose node 1. First, we add
node 2 that is connected by an edge of weight 3:

1

2 3

4

5 6

3

After this, there are two edges with weight 5, so we can add either node 3 or
node 5 to the tree. Let us add node 3 first:

1

2 3

4

5 6

3
5

The process continues until all nodes have been included in the tree:

1

2 3

4

5 6

3
5

2
7

3

Implementation

Like Dijkstra’s algorithm, Prim’s algorithm can be efficiently implemented using a
priority queue. The priority queue should contain all nodes that can be connected
to the current component using a single edge, in increasing order of the weights
of the corresponding edges.

114

The time complexity of Prim’s algorithm is O(n+m logm) that equals the time
complexity of Dijkstra’s algorithm. In practice, Prim’s and Kruskal’s algorithms
are both efficient, and the choice of the algorithm is a matter of taste. Still, most
competitive programmers use Kruskal’s algorithm.

115

116

Chapter 16

Directed graphs

In this chapter, we focus on two classes of directed graphs:

• Acyclic graphs: There are no cycles in the graph, so there is no path from
any node to itself1.

• Successor graphs: The outdegree of each node is 1, so each node has a
unique successor.

It turns out that in both cases, we can design efficient algorithms that are based
on the special properties of the graphs.

16.1 Topological sorting

A topological sort is an ordering of the nodes of a directed graph such that if
there is a path from node a to node b, then node a appears before node b in the
ordering. For example, for the graph

1 2 3

4 5 6

one topological sort is [4,1,5,2,3,6]:

1 2 34 5 6

An acyclic graph always has a topological sort. However, if the graph contains
a cycle, it is not possible to form a topological sort, because no node of the cycle
can appear before the other nodes of the cycle in the ordering. It turns out that
depth-first search can be used to both check if a directed graph contains a cycle
and, if it does not contain a cycle, to construct a topological sort.

1Directed acyclic graphs are sometimes called DAGs.

117

Algorithm

The idea is to go through the nodes of the graph and always begin a depth-first
search at the current node if it has not been processed yet. During the searches,
the nodes have three possible states:

• state 0: the node has not been processed (white)

• state 1: the node is under processing (light gray)

• state 2: the node has been processed (dark gray)

Initially, the state of each node is 0. When a search reaches a node for the
first time, its state becomes 1. Finally, after all successors of the node have been
processed, its state becomes 2.

If the graph contains a cycle, we will find this out during the search, because
sooner or later we will arrive at a node whose state is 1. In this case, it is not
possible to construct a topological sort.

If the graph does not contain a cycle, we can construct a topological sort by
adding each node to a list when the state of the node becomes 2. This list in
reverse order is a topological sort.

Example 1

In the example graph, the search first proceeds from node 1 to node 6:

1 2 3

4 5 6

Now node 6 has been processed, so it is added to the list. After this, also nodes
3, 2 and 1 are added to the list:

1 2 3

4 5 6

At this point, the list is [6,3,2,1]. The next search begins at node 4:

1 2 3

4 5 6

118

Thus, the final list is [6,3,2,1,5,4]. We have processed all nodes, so a topologi-
cal sort has been found. The topological sort is the reverse list [4,5,1,2,3,6]:

1 2 34 5 6

Note that a topological sort is not unique, and there can be several topological
sorts for a graph.

Example 2

Let us now consider a graph for which we cannot construct a topological sort,
because the graph contains a cycle:

1 2 3

4 5 6

The search proceeds as follows:

1 2 3

4 5 6

The search reaches node 2 whose state is 1, which means that the graph contains
a cycle. In this example, there is a cycle 2→ 3→ 5→ 2.

16.2 Dynamic programming

If a directed graph is acyclic, dynamic programming can be applied to it. For
example, we can efficiently solve the following problems concerning paths from a
starting node to an ending node:

• how many different paths are there?

• what is the shortest/longest path?

• what is the minimum/maximum number of edges in a path?

• which nodes certainly appear in any path?

119

Counting the number of paths

As an example, let us calculate the number of paths from node 1 to node 6 in the
following graph:

1 2 3

4 5 6

There are a total of three such paths:

• 1→ 2→ 3→ 6

• 1→ 4→ 5→ 2→ 3→ 6

• 1→ 4→ 5→ 3→ 6

Let paths(x) denote the number of paths from node 1 to node x. As a base
case, paths(1) = 1. Then, to calculate other values of paths(x), we may use the
recursion

paths(x)= paths(a1)+paths(a2)+·· ·+paths(ak)

where a1,a2, . . . ,ak are the nodes from which there is an edge to x. Since the graph
is acyclic, the values of paths(x) can be calculated in the order of a topological
sort. A topological sort for the above graph is as follows:

1 2 34 5 6

Hence, the numbers of paths are as follows:

1 2 3

4 5 6

1 1 3

1 2 3

For example, to calculate the value of paths(3), we can use the formula
paths(2)+paths(5), because there are edges from nodes 2 and 5 to node 3. Since
paths(2)= 2 and paths(5)= 1, we conclude that paths(3)= 3.

120

Extending Dijkstra’s algorithm

A by-product of Dijkstra’s algorithm is a directed, acyclic graph that indicates
for each node of the original graph the possible ways to reach the node using a
shortest path from the starting node. Dynamic programming can be applied to
that graph. For example, in the graph

1 2

3 4

5

3

5 4

8

2
1

2

the shortest paths from node 1 may use the following edges:

1 2

3 4

5

3

5 4

2
1

2

Now we can, for example, calculate the number of shortest paths from node 1
to node 5 using dynamic programming:

1 2

3 4

5

3

5 4

2
1

2

1 1

2 3

3

Representing problems as graphs

Actually, any dynamic programming problem can be represented as a directed,
acyclic graph. In such a graph, each node corresponds to a dynamic programming
state and the edges indicate how the states depend on each other.

As an example, consider the problem of forming a sum of money n using
coins {c1, c2, . . . , ck}. In this problem, we can construct a graph where each node
corresponds to a sum of money, and the edges show how the coins can be chosen.
For example, for coins {1,3,4} and n = 6, the graph is as follows:

121

0 1 2 3 4 5 6

Using this representation, the shortest path from node 0 to node n corresponds
to a solution with the minimum number of coins, and the total number of paths
from node 0 to node n equals the total number of solutions.

16.3 Successor paths

For the rest of the chapter, we will focus on successor graphs. In those graphs,
the outdegree of each node is 1, i.e., exactly one edge starts at each node. A
successor graph consists of one or more components, each of which contains one
cycle and some paths that lead to it.

Successor graphs are sometimes called functional graphs. The reason for
this is that any successor graph corresponds to a function that defines the edges
of the graph. The parameter for the function is a node of the graph, and the
function gives the successor of that node.

For example, the function

x 1 2 3 4 5 6 7 8 9
succ(x) 3 5 7 6 2 2 1 6 3

defines the following graph:

1 23

4

5

67

8

9

Since each node of a successor graph has a unique successor, we can also
define a function succ(x,k) that gives the node that we will reach if we begin at
node x and walk k steps forward. For example, in the above graph succ(4,6)= 2,
because we will reach node 2 by walking 6 steps from node 4:

4 6 2 5 2 5 2

A straightforward way to calculate a value of succ(x,k) is to start at node x
and walk k steps forward, which takes O(k) time. However, using preprocessing,
any value of succ(x,k) can be calculated in only O(logk) time.

The idea is to precalculate all values of succ(x,k) where k is a power of two
and at most u, where u is the maximum number of steps we will ever walk. This
can be efficiently done, because we can use the following recursion:

122

succ(x,k)=
{
succ(x) k = 1
succ(succ(x,k/2),k/2) k > 1

Precalculating the values takes O(n logu) time, because O(logu) values are
calculated for each node. In the above graph, the first values are as follows:

x 1 2 3 4 5 6 7 8 9
succ(x,1) 3 5 7 6 2 2 1 6 3
succ(x,2) 7 2 1 2 5 5 3 2 7
succ(x,4) 3 2 7 2 5 5 1 2 3
succ(x,8) 7 2 1 2 5 5 3 2 7

· · ·
After this, any value of succ(x,k) can be calculated by presenting the number

of steps k as a sum of powers of two. For example, if we want to calculate the
value of succ(x,11), we first form the representation 11= 8+2+1. Using that,

succ(x,11)= succ(succ(succ(x,8),2),1).

For example, in the previous graph

succ(4,11)= succ(succ(succ(4,8),2),1)= 5.

Such a representation always consists of O(logk) parts, so calculating a value
of succ(x,k) takes O(logk) time.

16.4 Cycle detection

Consider a successor graph that only contains a path that ends in a cycle. We
may ask the following questions: if we begin our walk at the starting node, what
is the first node in the cycle and how many nodes does the cycle contain?

For example, in the graph

54

6

321

we begin our walk at node 1, the first node that belongs to the cycle is node 4,
and the cycle consists of three nodes (4, 5 and 6).

A simple way to detect the cycle is to walk in the graph and keep track of all
nodes that have been visited. Once a node is visited for the second time, we can
conclude that the node is the first node in the cycle. This method works in O(n)
time and also uses O(n) memory.

However, there are better algorithms for cycle detection. The time complexity
of such algorithms is still O(n), but they only use O(1) memory. This is an
important improvement if n is large. Next we will discuss Floyd’s algorithm that
achieves these properties.

123

Floyd’s algorithm

Floyd’s algorithm2 walks forward in the graph using two pointers a and b.
Both pointers begin at a node x that is the starting node of the graph. Then,
on each turn, the pointer a walks one step forward and the pointer b walks two
steps forward. The process continues until the pointers meet each other:

a = succ(x)

b = succ(succ(x))

while (a != b):

a = succ(a)

b = succ(succ(b))

At this point, the pointer a has walked k steps and the pointer b has walked
2k steps, so the length of the cycle divides k. Thus, the first node that belongs
to the cycle can be found by moving the pointer a to node x and advancing the
pointers step by step until they meet again.

a = x

while (a != b):

a = succ(a)

b = succ(b)

first = a

After this, the length of the cycle can be calculated as follows:

b = succ(a)

length = 1

while (a != b):

b = succ(b)

length += 1

2The idea of the algorithm is mentioned in [22] and attributed to R. W. Floyd; however, it is
not known if Floyd actually discovered the algorithm.

124

Chapter 17

Strong connectivity

In a directed graph, the edges can be traversed in one direction only, so even if
the graph is connected, this does not guarantee that there would be a path from
a node to another node. For this reason, it is meaningful to define a new concept
that requires more than connectivity.

A graph is strongly connected if there is a path from any node to all other
nodes in the graph. For example, in the following picture, the left graph is
strongly connected while the right graph is not.

1 2

3 4

1 2

3 4

The right graph is not strongly connected because, for example, there is no
path from node 2 to node 1.

The strongly connected components of a graph divide the graph into
strongly connected parts that are as large as possible. The strongly connected
components form an acyclic component graph that represents the deep struc-
ture of the original graph.

For example, for the graph

7

321

654

the strongly connected components are as follows:

7

321

654

125

The corresponding component graph is as follows:

B

A

DC

The components are A = {1,2}, B = {3,6,7}, C = {4} and D = {5}.
A component graph is an acyclic, directed graph, so it is easier to process

than the original graph. Since the graph does not contain cycles, we can always
construct a topological sort and use dynamic programming techniques like those
presented in Chapter 16.

17.1 Kosaraju’s algorithm

Kosaraju’s algorithm1 is an efficient method for finding the strongly connected
components of a directed graph. The algorithm performs two depth-first searches:
the first search constructs a list of nodes according to the structure of the graph,
and the second search forms the strongly connected components.

Search 1

The first phase of Kosaraju’s algorithm constructs a list of nodes in the order
in which a depth-first search processes them. The algorithm goes through the
nodes, and begins a depth-first search at each unprocessed node. Each node will
be added to the list after it has been processed.

In the example graph, the nodes are processed in the following order:

7

321

654

1/8 2/7 9/14

4/5 3/6 11/12

10/13

The notation x/y means that processing the node started at time x and finished
at time y. Thus, the corresponding list is as follows:

1According to [1], S. R. Kosaraju invented this algorithm in 1978 but did not publish it. In
1981, the same algorithm was rediscovered and published by M. Sharir [29].

126

node processing time
4 5
5 6
2 7
1 8
6 12
7 13
3 14

Search 2

The second phase of the algorithm forms the strongly connected components of
the graph. First, the algorithm reverses every edge in the graph. This guarantees
that during the second search, we will always find strongly connected components
that do not have extra nodes.

After reversing the edges, the example graph is as follows:

7

321

654

After this, the algorithm goes through the list of nodes created by the first
search, in reverse order. If a node does not belong to a component, the algorithm
creates a new component and starts a depth-first search that adds all new nodes
found during the search to the new component.

In the example graph, the first component begins at node 3:

7

321

654

Note that since all edges are reversed, the component does not ”leak” to other
parts in the graph.

127

The next nodes in the list are nodes 7 and 6, but they already belong to a
component, so the next new component begins at node 1:

7

321

654

Finally, the algorithm processes nodes 5 and 4 that create the remaining
strongly connected components:

7

321

654

The time complexity of the algorithm is O(n+ m), because the algorithm
performs two depth-first searches.

17.2 2SAT problem

Strong connectivity is also linked with the 2SAT problem2. In this problem, we
are given a logical formula

(a1 ∨b1)∧ (a2 ∨b2)∧·· ·∧ (am ∨bm),

where each ai and bi is either a logical variable (x1, x2, . . . , xn) or a negation of
a logical variable (¬x1,¬x2, . . . ,¬xn). The symbols ”∧” and ”∨” denote logical
operators ”and” and ”or”. Our task is to assign each variable a value so that the
formula is true, or state that this is not possible.

For example, the formula

L1 = (x2 ∨¬x1)∧ (¬x1 ∨¬x2)∧ (x1 ∨ x3)∧ (¬x2 ∨¬x3)∧ (x1 ∨ x4)

is true when the variables are assigned as follows:
x1 = false
x2 = false
x3 = true
x4 = true

2The algorithm presented here was introduced in [2]. There is also another well-known
linear-time algorithm [10] that is based on backtracking.

128

However, the formula

L2 = (x1 ∨ x2)∧ (x1 ∨¬x2)∧ (¬x1 ∨ x3)∧ (¬x1 ∨¬x3)

is always false, regardless of how we assign the values. The reason for this is
that we cannot choose a value for x1 without creating a contradiction. If x1 is
false, both x2 and ¬x2 should be true which is impossible, and if x1 is true, both
x3 and ¬x3 should be true which is also impossible.

The 2SAT problem can be represented as a graph whose nodes correspond to
variables xi and negations ¬xi, and edges determine the connections between
the variables. Each pair (ai ∨ bi) generates two edges: ¬ai → bi and ¬bi → ai.
This means that if ai does not hold, bi must hold, and vice versa.

The graph for the formula L1 is:

¬x3 x2

¬x4 x1

¬x1 x4

¬x2 x3

And the graph for the formula L2 is:

x3 x2 ¬x2 ¬x3

¬x1

x1

The structure of the graph tells us whether it is possible to assign the values
of the variables so that the formula is true. It turns out that this can be done
exactly when there are no nodes xi and ¬xi such that both nodes belong to the
same strongly connected component. If there are such nodes, the graph contains
a path from xi to ¬xi and also a path from ¬xi to xi, so both xi and ¬xi should be
true which is not possible.

In the graph of the formula L1 there are no nodes xi and ¬xi such that both
nodes belong to the same strongly connected component, so a solution exists. In
the graph of the formula L2 all nodes belong to the same strongly connected
component, so a solution does not exist.

If a solution exists, the values for the variables can be found by going through
the nodes of the component graph in a reverse topological sort order. At each step,
we process a component that does not contain edges that lead to an unprocessed
component. If the variables in the component have not been assigned values,
their values will be determined according to the values in the component, and if

129

they already have values, they remain unchanged. The process continues until
each variable has been assigned a value.

The component graph for the formula L1 is as follows:

A B C D

The components are A = {¬x4}, B = {x1, x2,¬x3}, C = {¬x1,¬x2, x3} and D = {x4}.
When constructing the solution, we first process the component D where x4
becomes true. After this, we process the component C where x1 and x2 become
false and x3 becomes true. All variables have been assigned values, so the
remaining components A and B do not change the variables.

Note that this method works, because the graph has a special structure: if
there are paths from node xi to node x j and from node x j to node ¬x j, then node
xi never becomes true. The reason for this is that there is also a path from node
¬x j to node ¬xi, and both xi and x j become false.

A more difficult problem is the 3SAT problem, where each part of the formula
is of the form (ai ∨bi ∨ ci). This problem is NP-hard, so no efficient algorithm for
solving the problem is known.

130

Chapter 18

Tree queries

This chapter discusses techniques for processing queries on subtrees and paths
of a rooted tree. For example, such queries are:

• what is the kth ancestor of a node?

• what is the sum of values in the subtree of a node?

• what is the sum of values on a path between two nodes?

• what is the lowest common ancestor of two nodes?

18.1 Finding ancestors

The kth ancestor of a node x in a rooted tree is the node that we will reach
if we move k levels up from x. Let ancestor(x,k) denote the kth ancestor of a
node x (or 0 if there is no such an ancestor). For example, in the following tree,
ancestor(2,1)= 1 and ancestor(8,2)= 4.

1

24 5

63 7

8

An easy way to calculate any value of ancestor(x,k) is to perform a sequence
of k moves in the tree. However, the time complexity of this method is O(k),
which may be slow, because a tree of n nodes may have a chain of n nodes.

131

Fortunately, using a technique similar to that used in Chapter 16.3, any value
of ancestor(x,k) can be efficiently calculated in O(logk) time after preprocessing.
The idea is to precalculate all values ancestor(x,k) where k ≤ n is a power of two.
For example, the values for the above tree are as follows:

x 1 2 3 4 5 6 7 8
ancestor(x,1) 0 1 4 1 1 2 4 7
ancestor(x,2) 0 0 1 0 0 1 1 4
ancestor(x,4) 0 0 0 0 0 0 0 0

· · ·

The preprocessing takes O(n logn) time, because O(logn) values are calculated
for each node. After this, any value of ancestor(x,k) can be calculated in O(logk)
time by representing k as a sum where each term is a power of two.

18.2 Subtrees and paths

A tree traversal array contains the nodes of a rooted tree in the order in which
a depth-first search from the root node visits them. For example, in the tree

1

2 3 4 5

6 7 8 9

a depth-first search proceeds as follows:

1

2 3 4 5

6 7 8 9

Hence, the corresponding tree traversal array is as follows:

1 2 6 3 4 7 8 9 5

132

Subtree queries

Each subtree of a tree corresponds to a subarray of the tree traversal array such
that the first element of the subarray is the root node. For example, the following
subarray contains the nodes of the subtree of node 4:

1 2 6 3 4 7 8 9 5

Using this fact, we can efficiently process queries that are related to subtrees of
a tree. As an example, consider a problem where each node is assigned a value,
and our task is to support the following queries:

• update the value of a node

• calculate the sum of values in the subtree of a node

Consider the following tree where the blue numbers are the values of the
nodes. For example, the sum of the subtree of node 4 is 3+4+3+1= 11.

1

2 3 4 5

6 7 8 9

2

3 5 3 1

4 4 3 1

The idea is to construct a tree traversal array that contains three values for
each node: the identifier of the node, the size of the subtree, and the value of the
node. For example, the array for the above tree is as follows:

node id

subtree size

node value

1 2 6 3 4 7 8 9 5

9 2 1 1 4 1 1 1 1

2 3 4 5 3 4 3 1 1

Using this array, we can calculate the sum of values in any subtree by first
finding out the size of the subtree and then the values of the corresponding nodes.
For example, the values in the subtree of node 4 can be found as follows:

node id

subtree size

node value

1 2 6 3 4 7 8 9 5

9 2 1 1 4 1 1 1 1

2 3 4 5 3 4 3 1 1

To answer the queries efficiently, it suffices to store the values of the nodes
in a binary indexed or segment tree. After this, we can both update a value and
calculate the sum of values in O(logn) time.

133

Path queries

Using a tree traversal array, we can also efficiently calculate sums of values on
paths from the root node to any node of the tree. Consider a problem where our
task is to support the following queries:

• change the value of a node

• calculate the sum of values on a path from the root to a node

For example, in the following tree, the sum of values from the root node to
node 7 is 4+5+5= 14:

1

2 3 4 5

6 7 8 9

4

5 3 5 2

3 5 3 1

We can solve this problem like before, but now each value in the last row of
the array is the sum of values on a path from the root to the node. For example,
the following array corresponds to the above tree:

node id

subtree size

path sum

1 2 6 3 4 7 8 9 5

9 2 1 1 4 1 1 1 1

4 9 12 7 9 14 12 10 6

When the value of a node increases by x, the sums of all nodes in its subtree
increase by x. For example, if the value of node 4 increases by 1, the array
changes as follows:

node id

subtree size

path sum

1 2 6 3 4 7 8 9 5

9 2 1 1 4 1 1 1 1

4 9 12 7 10 15 13 11 6

Thus, to support both the operations, we should be able to increase all values
in a range and retrieve a single value. This can be done in O(logn) time using a
binary indexed or segment tree (see Chapter 9.4).

134

18.3 Lowest common ancestor

The lowest common ancestor of two nodes of a rooted tree is the lowest node
whose subtree contains both the nodes. A typical problem is to efficiently process
queries that ask to find the lowest common ancestor of two nodes.

For example, in the following tree, the lowest common ancestor of nodes 5 and
8 is node 2:

1

42 3

75 6

8

Next we will discuss two efficient techniques for finding the lowest common
ancestor of two nodes.

Method 1

One way to solve the problem is to use the fact that we can efficiently find the
kth ancestor of any node in the tree. Using this, we can divide the problem of
finding the lowest common ancestor into two parts.

We use two pointers that initially point to the two nodes whose lowest common
ancestor we should find. First, we move one of the pointers upwards so that both
pointers point to nodes at the same level.

In the example scenario, we move the second pointer one level up so that it
points to node 6 which is at the same level with node 5:

1

42 3

75 6

8

135

After this, we determine the minimum number of steps needed to move both
pointers upwards so that they will point to the same node. The node to which the
pointers point after this is the lowest common ancestor.

In the example scenario, it suffices to move both pointers one step upwards to
node 2, which is the lowest common ancestor:

1

42 3

75 6

8

Since both parts of the algorithm can be performed in O(logn) time using
precomputed information, we can find the lowest common ancestor of any two
nodes in O(logn) time.

Method 2

Another way to solve the problem is based on a tree traversal array1. Once again,
the idea is to traverse the nodes using a depth-first search:

1

42 3

75 6

8

However, we use a different tree traversal array than before: we add each
node to the array always when the depth-first search walks through the node,
and not only at the first visit. Hence, a node that has k children appears k+1
times in the array and there are a total of 2n−1 nodes in the array.

1This lowest common ancestor algorithm was presented in [4]. This technique is sometimes
called the Euler tour technique [33].

136

We store two values in the array: the identifier of the node and the depth of
the node in the tree. The following array corresponds to the above tree:

node id

depth

1 2 5 2 6 8 6 2 1 3 1 4 7 4 1

1 2 3 2 3 4 3 2 1 2 1 2 3 2 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Now we can find the lowest common ancestor of nodes a and b by finding the
node with the minimum depth between nodes a and b in the array. For example,
the lowest common ancestor of nodes 5 and 8 can be found as follows:

node id

depth

↑

1 2 5 2 6 8 6 2 1 3 1 4 7 4 1

1 2 3 2 3 4 3 2 1 2 1 2 3 2 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Node 5 is at position 2, node 8 is at position 5, and the node with minimum
depth between positions 2 . . .5 is node 2 at position 3 whose depth is 2. Thus, the
lowest common ancestor of nodes 5 and 8 is node 2.

Thus, to find the lowest common ancestor of two nodes it suffices to process a
range minimum query. Since the array is static, we can process such queries in
O(1) time after an O(n logn) time preprocessing.

Distances of nodes

The distance between nodes a and b equals the length of the path from a to b. It
turns out that the problem of calculating the distance between nodes reduces to
finding their lowest common ancestor.

First, we root the tree arbitrarily. After this, the distance of nodes a and b
can be calculated using the formula

depth(a)+depth(b)−2 ·depth(c),

where c is the lowest common ancestor of a and b and depth(s) denotes the depth
of node s. For example, consider the distance of nodes 5 and 8:

1

42 3

75 6

8

137

The lowest common ancestor of nodes 5 and 8 is node 2. The depths of the
nodes are depth(5) = 3, depth(8) = 4 and depth(2) = 2, so the distance between
nodes 5 and 8 is 3+4−2 ·2= 3.

18.4 Offline algorithms

So far, we have discussed online algorithms for tree queries. Those algorithms
are able to process queries one after another so that each query is answered
before receiving the next query.

However, in many problems, the online property is not necessary. In this
section, we focus on offline algorithms. Those algorithms are given a set of
queries which can be answered in any order. It is often easier to design an offline
algorithm compared to an online algorithm.

Merging data structures

One method to construct an offline algorithm is to perform a depth-first tree
traversal and maintain data structures in nodes. At each node s, we create a
data structure d[s] that is based on the data structures of the children of s. Then,
using this data structure, all queries related to s are processed.

As an example, consider the following problem: We are given a tree where
each node has some value. Our task is to process queries of the form ”calculate
the number of nodes with value x in the subtree of node s”. For example, in the
following tree, the subtree of node 4 contains two nodes whose value is 3.

1

2 3 4 5

6 7 8 9

2

3 5 3 1

4 4 3 1

In this problem, we can use map structures to answer the queries. For
example, the maps for node 4 and its children are as follows:

4
1

3
1

1
1

1 3 4
1 2 1

138

If we create such a data structure for each node, we can easily process all
given queries, because we can handle all queries related to a node immediately
after creating its data structure. For example, the above map structure for node
4 tells us that its subtree contains two nodes whose value is 3.

However, it would be too slow to create all data structures from scratch.
Instead, at each node s, we create an initial data structure d[s] that only contains
the value of s. After this, we go through the children of s and merge d[s] and all
data structures d[u] where u is a child of s.

For example, in the above tree, the map for node 4 is created by merging the
following maps:

4
1

3
1

1
1

3
1

Here the first map is the initial data structure for node 4, and the other three
maps correspond to nodes 7, 8 and 9.

The merging at node s can be done as follows: We go through the children
of s and at each child u merge d[s] and d[u]. We always copy the contents from
d[u] to d[s]. However, before this, we swap the contents of d[s] and d[u] if d[s] is
smaller than d[u]. By doing this, each value is copied only O(logn) times during
the tree traversal, which ensures that the algorithm is efficient.

To swap the contents of two data structures a and b efficiently, we can just
use the following code:

a,b = b, a

Lowest common ancestors

There is also an offline algorithm for processing a set of lowest common ancestor
queries2. The algorithm is based on the union-find data structure (see Chapter
15.2), and the benefit of the algorithm is that it is easier to implement than the
algorithms discussed earlier in this chapter.

The algorithm is given as input a set of pairs of nodes, and it determines for
each such pair the lowest common ancestor of the nodes. The algorithm performs
a depth-first tree traversal and maintains disjoint sets of nodes. Initially, each
node belongs to a separate set. For each set, we also store the highest node in the
tree that belongs to the set.

When the algorithm visits a node x, it goes through all nodes y such that the
lowest common ancestor of x and y has to be found. If y has already been visited,
the algorithm reports that the lowest common ancestor of x and y is the highest
node in the set of y. Then, after processing node x, the algorithm joins the sets of
x and its parent.

For example, suppose that we want to find the lowest common ancestors of
node pairs (5,8) and (2,7) in the following tree:

2This algorithm was published by R. E. Tarjan in 1979 [32].

139

1

42 3

75 6

8

In the following trees, gray nodes denote visited nodes and dashed groups of
nodes belong to the same set. When the algorithm visits node 8, it notices that
node 5 has been visited and the highest node in its set is 2. Thus, the lowest
common ancestor of nodes 5 and 8 is 2:

1

42 3

75 6

8

Later, when visiting node 7, the algorithm determines that the lowest common
ancestor of nodes 2 and 7 is 1:

1

42 3

75 6

8

140

Bibliography

[1] A. V. Aho, J. E. Hopcroft and J. Ullman. Data Structures and Algorithms,
Addison-Wesley, 1983.

[2] B. Aspvall, M. F. Plass and R. E. Tarjan. A linear-time algorithm for testing
the truth of certain quantified boolean formulas. Information Processing
Letters, 8(3):121–123, 1979.

[3] R. Bellman. On a routing problem. Quarterly of Applied Mathematics,
16(1):87–90, 1958.

[4] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Latin
American Symposium on Theoretical Informatics, 88–94, 2000.

[5] J. Bentley. Programming Pearls. Addison-Wesley, 1999 (2nd edition).

[6] M.T. Goodrich and J.G. Kloss. Tiered Vectors: Efficient Dynamic Arrays for
Rank-Based Sequences. In 6th International Workshop on Algorithms and
Data Structures (WADS), 205–216, 1999.

[7] J. Bentley and D. Wood. An optimal worst case algorithm for reporting inter-
sections of rectangles. IEEE Transactions on Computers, C-29(7):571–577,
1980.

[8] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

[9] M. Dima and R. Ceterchi. Efficient range minimum queries using binary
indexed trees. Olympiad in Informatics, 9(1):39–44, 2015.

[10] S. Even, A. Itai and A. Shamir. On the complexity of time table and multi-
commodity flow problems. 16th Annual Symposium on Foundations of Com-
puter Science, 184–193, 1975.

[11] D. Fanding. A faster algorithm for shortest-path – SPFA. Journal of South-
west Jiaotong University, 2, 1994.

[12] P. M. Fenwick. A new data structure for cumulative frequency tables. Soft-
ware: Practice and Experience, 24(3):327–336, 1994.

[13] J. Fischer and V. Heun. Theoretical and practical improvements on the
RMQ-problem, with applications to LCA and LCE. In Annual Symposium on
Combinatorial Pattern Matching, 36–48, 2006.

141

[14] R. W. Floyd Algorithm 97: shortest path. Communications of the ACM,
5(6):345, 1962.

[15] L. R. Ford. Network flow theory. RAND Corporation, Santa Monica, Califor-
nia, 1956.

[16] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman and Company, 1979.

[17] A. Grønlund and S. Pettie. Threesomes, degenerates, and love triangles.
In Proceedings of the 55th Annual Symposium on Foundations of Computer
Science, 621–630, 2014.

[18] J. E. Hopcroft and J. D. Ullman. A linear list merging algorithm. Technical
report, Cornell University, 1971.

[19] E. Horowitz and S. Sahni. Computing partitions with applications to the
knapsack problem. Journal of the ACM, 21(2):277–292, 1974.

[20] D. A. Huffman. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[21] P. W. Kasteleyn. The statistics of dimers on a lattice: I. The number of dimer
arrangements on a quadratic lattice. Physica, 27(12):1209–1225, 1961.

[22] D. E. Knuth. The Art of Computer Programming. Volume 2: Seminumerical
Algorithms, Addison–Wesley, 1998 (3rd edition).

[23] D. E. Knuth. The Art of Computer Programming. Volume 3: Sorting and
Searching, Addison–Wesley, 1998 (2nd edition).

[24] J. B. Kruskal. On the shortest spanning subtree of a graph and the travel-
ing salesman problem. Proceedings of the American Mathematical Society,
7(1):48–50, 1956.

[25] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet physics doklady, 10(8):707–710, 1966.

[26] D. Pearson. A polynomial-time algorithm for the change-making problem.
Operations Research Letters, 33(3):231–234, 2005.

[27] R. C. Prim. Shortest connection networks and some generalizations. Bell
System Technical Journal, 36(6):1389–1401, 1957.

[28] 27-Queens Puzzle: Massively Parallel Enumeration and Solution Counting.
https://github.com/preusser/q27

[29] M. Sharir. A strong-connectivity algorithm and its applications in data flow
analysis. Computers & Mathematics with Applications, 7(1):67–72, 1981.

[30] P. Stańczyk. Algorytmika praktyczna w konkursach Informatycznych, MSc
thesis, University of Warsaw, 2006.

142

https://github.com/preusser/q27

[31] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal
of the ACM, 22(2):215–225, 1975.

[32] R. E. Tarjan. Applications of path compression on balanced trees. Journal of
the ACM, 26(4):690–715, 1979.

[33] R. E. Tarjan and U. Vishkin. Finding biconnected componemts and comput-
ing tree functions in logarithmic parallel time. In Proceedings of the 25th
Annual Symposium on Foundations of Computer Science, 12–20, 1984.

[34] H. N. V. Temperley and M. E. Fisher. Dimer problem in statistical mechanics
– an exact result. Philosophical Magazine, 6(68):1061–1063, 1961.

[35] S. Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11–12,
1962.

143

	I Basic techniques
	Time complexity
	Calculation rules
	Complexity classes
	Estimating efficiency
	Maximum subarray sum

	Sorting
	Sorting theory
	Sorting in Python
	Binary search

	Data structures
	Dynamic arrays
	Set structures
	Map structures/Dictionaries
	Other structures

	Complete search
	Generating subsets
	Generating permutations
	Backtracking
	Pruning the search
	Meet in the middle

	Greedy algorithms
	Coin problem
	Scheduling
	Tasks and deadlines
	Minimizing sums
	Data compression

	Dynamic programming
	Coin problem
	Longest increasing subsequence
	Paths in a grid
	Knapsack problems
	Edit distance
	Counting tilings

	Amortized analysis
	Two pointers method
	Nearest smaller elements
	Sliding window minimum

	Range queries
	Static array queries
	Binary indexed tree
	Segment tree
	Additional techniques

	Basics of graphs
	Graph terminology
	Graph representation

	Graph traversal
	Depth-first search
	Breadth-first search
	Applications

	Shortest paths
	Bellman–Ford algorithm
	Dijkstra's algorithm
	Floyd–Warshall algorithm

	Tree algorithms
	Tree traversal
	Diameter
	All longest paths
	Binary trees

	Spanning trees
	Kruskal's algorithm
	Union-find structure
	Prim's algorithm

	Directed graphs
	Topological sorting
	Dynamic programming
	Successor paths
	Cycle detection

	Strong connectivity
	Kosaraju's algorithm
	2SAT problem

	Tree queries
	Finding ancestors
	Subtrees and paths
	Lowest common ancestor
	Offline algorithms

	Bibliography

