
Algorithms and Data Structures 2 Weekplan: Partial Sums and Dynamic Arrays

Litterature

At the lecture we will talk about data structures for partial sums and for dynamic arrays. See litterature on the
course webpage.

Exercises

1 [w] Fenwick Trees Consider an array A= [−, 4, 3, 1, 5, 8, 4, 1, 3]. Solve the following exercises.

1.1 Compute the Fenwick tree F for A.

1.2 Compute the indices in F that are accessed on a sum(5) query. Verify that the corresponding entries add up
to the correct sum.

1.3 Compute the indices in F that are changed on an update(5,8) query. Update the entries and verify that the
resulting array is a correct Fenwick tree.

2 Partial Sums With More Operations Consider extending the Fenwick tree to support the following new
operations.

• access(i): return A[i].

• report(i, j): return A[i] + A[i + 1] + · · ·+ A[j].

• select(j): return the smallest i such that sum(i)≥ j.

Solve the following exercises.

2.1 Show how to implement access in O(log n) time.

2.2 Show how to implement report in O(log n) time.

2.3 Show how to implement select in O(log n) time. Assume entries in A are all positive.

3 Fenwick Tree Analysis and Implementation Solve the following exercises. Let F be the Fenwick tree of an
array A of length n.

3.1 Discuss why the array F is called a tree.

3.2 Show that any interval [1, i] is covered by O(log n) partial sums stored in F .

3.3 Consider the index computation for sum. Let i be a positive integer whose rightmost 1-bit is at position k,
i.e., if i = 10 = 10102 then k = 1 and 2k = 21 = 2. Show that j = i & (i + 1) is the integer 2k. Here i the
bitwise negation of i, i.e., if i = 10 then i = 01012.

4 [w]Dynamic Arrays Consider a 2-level rotated array data structure representing the array A= [8, 11,2, 3,4, 9,8, 1].
Solve the following exercises.

4.1 Draw the 2-level rotated array. Use
p

n≈ 3.

4.2 Show how to compute the rotated array R j and index k in R j corresponding to an index i in A. Both should
be constant time.

4.3 Show the result of each of the operations insert(5, 42), delete(2), delete(6).

5 Dynamic Arrays on the Fringe Consider the dynamic array problem with the restriction that insertion and
deletions always occurs within the leftmost or rightmost 42 positions of the array. Give a simple solution to the
problem with this restriction.

1

Algorithms and Data Structures 2 Weekplan: Partial Sums and Dynamic Arrays

6 CSES: Dynamic Range Sum Solve https://cses.fi/problemset/task/1648

7 In-Place Dictionaries Let S be a set of n integers. Recall that a dictionary supports the following operations.

• member(x): determine if x ∈ S.

• insert(x): set S = S ∪ {x}.

• delete(x): set S = S\{x}.

We consider in-place dictionaries. Solve the following exercises.

7.1 Suppose that we only want to support member. Give a in-place data structure that supports member in
O(log n) time. Hint: binary search.

7.2 Let A be a rotated sorted array of length n containing the integers in S, i.e., A is a circular shift of the sorted
array of the integers in S. Show how to search in A in O(log n) time. Your solution should be in-place.
Furthermore, assume that you cannot afford to store the circular shift in the data structure. Hint: peaks.

7.3 [∗] Show how implement an in-place dictionary that supports member in O(log n) time and insertions and
deletions in O(

p
n log n) time.

Puzzle of the week In a room stands 100 boxes numbered from 1 to 100. In each box is a piece of paper with a
number between 1-100 (every number is on precisely one piece of paper). You enter the room and can inspect 50
boxes. After that you can switch the content of two boxes (these two boxes can also be boxes you didn’t inspect).
Now you leave the room and your friend comes in. Your friend is given an arbitrary number from 1-100 (that you
don’t know) and to find this number, they can open at most 50 boxes. How can you ensure that your friend finds
the number?

2

https://cses.fi/problemset/task/1648

