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String Matching

• String matching problem:  

• string T (text) and string P (pattern) over an alphabet Σ. 

• |T| = n, |P| = m. 

• Report all starting positions of occurrences of P in T.

P = a b a b a c a
T = b a c b a b a b a b a b a c a b



Strings

• ε: empty string

• prefix/suffix: v=xy:


• x prefix of v, if y ≠ ε x is a proper prefix of v

• y suffix of v, if y ≠ ε x is a proper suffix of v.


• Example: S = aabca


• The suffixes of S are: aabca, abca, bca, ca and a.


• The strings abca, bca, ca and a are proper suffixes of S.

Suffix of S

S

Prefix of S



String Matching

• Knuth-Morris-Pratt (KMP)  

• Finite automaton



A naive string matching algorithm

a b a b a c a
b a c b a b a b a b a b a c a b

a b a b a c a
a b a b a c a

a b a b a c a
a b a b a c a

a b a b a c a
a b a b a c a

a b a b a c a
a b a b a c a

a b a b a c a



a a a b a a a b a b a b a c a b b

Improving the naive algorithm

a a a b a b a
T =
P =  a a a b a b a

a a a b a b a



Exploiting what we know from pattern

a b a b a c a
T =
P =  a b a b a c a

a b a b a a x

a b a b a c a
T = a b a b a b x

a b a b a c a
T = a b a b a c x

a b a b a c a
How much should we shift the pattern? 5

How much should we shift the pattern? 2

a b a b a c a

a b a b a c a

a b a b a c a

How much should we shift the pattern? 0

x

x

x



Exploiting what we know from pattern

a b a b a c a
T =
P =  a b a b a c a

a b a b a a x

a b a b a c a
T = a b a b a b x

a b a b a c a
T = a b a b a c x

a b a b a c a
Which character in the pattern should we compare to x? 2

5

a b a b a c a

a b a b a c a
7

x

x

x

Which character in the pattern should we compare to x?

Which character in the pattern should we compare to x?



Exploiting what we know from pattern

a b a b a c a
T =
P =  a b a b a c a

a b a b a a x

a b a b a c a
T = a b a b a b x

a b a b a c a
T = a b a b a c x

a b a b a c a
How much can we “reuse”? 1

4

a b a b a c a

a b a b a c a
6

x

x

x

How much can we “reuse”?

How much can we “reuse”?



Finite Automaton

• Finite automaton: alphabet Σ = {a,b,c}. P = ababaca.

0 1 2 3 4 5 6 7a b a b a c a
a

b

starting state 
accepting state 



Finite Automaton



Finite Automaton

• Finite automaton: alphabet Σ = {a,b,c}. P = ababaca.

0 1 2 3 4 5 6 7a b a b a c a

a

a a

b

a

b

starting state 
accepting state 

c

b,c

b,c

c

c

c



Finite Automaton

• Finite automaton: alphabet Σ = {a,b,c}. P = ababaca.

0 1 2 3 4 5 6 7a b a b a c a

a

a a

b

a

b

starting state 
accepting state 

c

b,c

b,c

c

c

c



Finite Automaton

• Finite automaton: alphabet Σ = {a,b,c}. P = ababaca. 

• State j: arc with character  goes to state i ≤ j +1 such that 
 is the longest prefix of  that is a suffix of .

α
P[1..i] P P[1…j] ⋅ α

0 1 2 3 4 5 6 7a b a b a c a

a

a a

b

a

b

starting state 
accepting state 



a

• Finite automaton: alphabet Σ = {a,b,c}. P = ababaca.

1 2 3 4 5 6 7
b a b a c a

b
b

0

Finite Automaton

a

a a
a

b a c b a b a b a b a b a c a bT = 



a

• Finite automaton: alphabet Σ = {a,b,c}. P = ababaca.

1 2 3 4 5 6 7
b a b a c a

b
b

0

Finite Automaton

a

a a
a

b a c b a b a b a b a b a c a bT = 

If we are in state j after reading T[1..i],  
then 

P[1..j] is the longest prefix of P that 
is a suffix of T[1..i]. 



Finite Automaton

T 

If we are in state j after reading T[1..i],  
then 

P[1..j] is the longest prefix of P that 
is a suffix of T[1..i]. 

α

P 

i i +1

x

P[1..j’] longest prefix of P that 
is a suffix of T[1..i+1]. P[1..j’]  longest prefix of P that 

is a suffix of P[1..j] . ⋅ α

j 

P α
j’ 

P[1..j’-1] is a prefix of P[1..j]. 
⇒



Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a



Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘aa’ = ‘a’ read ‘a’?

a

a a
a b a b a c aP:

Matched until now:



Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘ac’ = ‘ ’ read ‘c’?

a c
a b a b a c aP:

Matched until now:

a



Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘abb’ = ‘ ’ read ‘b’?

a

a b b
a b a b a c aP:

Matched until now:



Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘abc’ = ‘ ’ read ‘c’?

a

a b c
a b a b a c aP:

Matched until now:



Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘abaa’ = ‘a’ read ‘a’?

a

a

a b a a
a b a b a c aP:

Matched until now:



Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘abac’ = ‘ ’ read ‘c’?

a

a

a b a c
a b a b a c aP:

Matched until now:



Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘ababb’ = ‘ ’ read ‘b’?

a

a

a b a b b
a b a b a c aP:

Matched until now:



Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘ababc’ = ‘ ’ read ‘c’?

a

a

a b a b c
a b a b a c aP:

Matched until now:



Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

read ‘a’?

a

longest prefix of P that is a proper suffix of ‘ababaa’ = ‘a’ 

a a

a b a b a a
a b a b a c aP:

Matched until now:



Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

read ‘b’?

a

longest prefix of P that is a proper suffix of ‘ababaa’ = ‘abab’ 

a a

b

a b a b a b
a b a b a c aP:

Matched until now:



Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘ababacb’ = ‘ ’ read ‘b’?

a

a a

b



Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

a

read ‘c’? longest prefix of P that is a proper suffix of ‘ababacc’ = ‘ ’ 

a a

b



Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘ababacaa’ = ‘a’ read ‘a’?

a

a a

b

a a



Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

a

read ‘b’? longest prefix of P that is a proper suffix of ‘ababacab’ = ‘ab’ 

a a

b

a a

b



Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

a

a a

b

read ‘c’? longest prefix of P that is a proper suffix of ‘ababacac’ = ‘ ’ 

a a

b



Finite Automaton

• Finite automaton: 
• Q: finite set of states 
• q0 ∈ Q: start state 

• A ⊆ Q: set of accepting states 

• Σ: finite input alphabet 
• δ: transition function 

• Matching time: O(n) 
• Preprocessing time: O(m3|Σ|). (Can be done in O(m|Σ|)). 
• Total time: O(n + m|Σ|)

a b a b a c a

a

a a

b

a

b



KMP



KMP

• Finite automaton: alphabet Σ = {a,b,c}. P = ababaca. 

• KMP: Can be seen as finite automaton with failure links:

a b a b a c a

a

a a

b

a

b

a b a b a c a
1 2 3 4 5 6



KMP

• KMP: Can be seen as finite automaton with failure links: 

• longest prefix of P that is a suffix of what we have matched until now 
(ignore the mismatched character).

a b a b a c a
1 2 3 4 5 6

longest prefix of P that is a proper suffix of ‘aba' 



KMP matching

• KMP: Can be seen as finite automaton with failure links: 

• longest prefix of P that is a suffix of what we have matched until now.

b a c b a b a b a b a b a c a bT = 

a b a b a c a
1 2 3 4 5 6



KMP

• KMP: Can be seen as finite automaton with failure links: 

• longest prefix of P that is a proper suffix of what we have matched until 
now. 

• can follow several failure links when matching one character:

a b a b a aT = 

a b a b a c a
1 2 3 4 5 6



KMP Analysis

• Analysis.  |T| = n, |P| = m.


• How many times can we follow a forward edge?


• How many backward edges can we follow (compare to forward edges)?


• Total number of edges we follow?


• What else do we use time for?



KMP Analysis

• Lemma. The running time of KMP matching is O(n).


• Each time we follow a forward edge we read a new character of T.


• #backward edges followed ≤ #forward edges followed ≤ n.


• If in the start state and the character read in T does not match the forward 
edge, we stay there.


• Total time = #non-matched characters in start state + #forward edges 
followed + #backward edges followed ≤ 2n. 



• Failure link: longest prefix of P that is a proper suffix of what we have 
matched until now.

Computation of failure links

a b a b a c a
1 2 3 4 5 6

longest proper prefix of P that is a suffix of ‘abab' 

a b a b
a b a b a c a

Matched until now:

If we are in state j after 
reading T[1..i],  

then 
P[1..j] is the longest prefix of 

P that 
is a suffix of T[1..i]. 



• Failure link: longest prefix of P that is a proper suffix of what we have 
matched until now.


• Computing failure links: Use KMP matching algorithm.

Computation of failure links

longest prefix of P that is a proper suffix of ‘abab' 

a b a b a c a
1 2 3 4 5 6



• Failure link: longest prefix of P that is a proper suffix of what we have 
matched until now.


• Computing failure links: Use KMP matching algorithm.

Computation of failure links

longest prefix of P that is a suffix of ‘bab' 

a b a b a c a
1 2 3 4 5 6

If we are in state j after 
reading T[1..i],  

then 
P[1..j] is the longest prefix of 

P that 
is a suffix of T[1..i]. 



• Failure link: longest prefix of P that is a proper suffix of what we have 
matched until now.


• Computing failure links: Use KMP matching algorithm.

Computation of failure links

a b a b a c a
1 2 3 4 5 6

longest prefix of P that is a suffix of ‘bab' 

a b a b a c a
1 2 3 4 5 6

Can be found by using KMP to match ‘bab'

If we are in state j after 
reading T[1..i],  

then 
P[1..j] is the longest prefix of 

P that 
is a suffix of T[1..i]. 



• Computing failure links: As KMP matching algorithm (only need failure links 
that are already computed).


• Failure link: longest prefix of P that is a proper suffix of what we have 
matched until now.

Computation of failure links

bT = 

a b a b a c a
1 2 3 4 5 6



• Computing failure links: As KMP matching algorithm (only need failure links 
that are already computed).


• Failure link: longest prefix of P that is a proper suffix of what we have 
matched until now.

Computation of failure links

b aT = 

a b a b a c a
1 2 3 4 5 6



• Computing failure links: As KMP matching algorithm (only need failure links 
that are already computed).


• Failure link: longest prefix of P that is a proper suffix of what we have 
matched until now.

Computation of failure links

b a bT = 

a b a b a c a
1 2 3 4 5 6



• Computing failure links: As KMP matching algorithm (only need failure links 
that are already computed).


• Failure link: longest prefix of P that is a proper suffix of what we have 
matched until now.

Computation of failure links

b a b aT = 

a b a b a c a
1 2 3 4 5 6



• Computing failure links: As KMP matching algorithm (only need failure links 
that are already computed).


• Failure link: longest prefix of P that is a proper suffix of what we have 
matched until now.

Computation of failure links

b a b a cT = 

a b a b a c a
1 2 3 4 5 6



• Computing failure links: As KMP matching algorithm (only need failure links 
that are already computed).


• Failure link: longest prefix of P that is a proper suffix of what we have 
matched until now.

Computation of failure links

b a b a c aT = 

a b a b a c a
1 2 3 4 5 6



• Computing failure links: As KMP matching algorithm (only need failure links 
that are already computed).


• Failure link: longest prefix of P that is a proper suffix of what we have 
matched until now.

Computation of failure links

1 2 3 4 5 6 7

a b a b a c aP = 

a b a b a c a
1 2 3 4 5 6



KMP

• Computing π: As KMP matching algorithm (only need π values that are 
already computed).


• Running time: O(n + m):


• Lemma. Total number of comparisons of characters in KMP is at most 2n.


• Corollary. Total number of comparisons of characters in the preprocessing 
of KMP is at most 2m.



KMP: the π array

• π array: A representation of the failure links.


• Takes up less space than pointers.

a b a b a c a

i 1 2 3 4 5 6 7

π[i] 0 0 1 2 3 0 1

1 2 3 4 5 6


