
String Matching

Inge Li Gørtz

CLRS 32

String Matching

• String matching problem:

• string T (text) and string P (pattern) over an alphabet Σ.

• |T| = n, |P| = m.

• Report all starting positions of occurrences of P in T.

P = a b a b a c a
T = b a c b a b a b a b a b a c a b

Strings

• ε: empty string

• prefix/suffix: v=xy:

• x prefix of v, if y ≠ ε x is a proper prefix of v

• y suffix of v, if y ≠ ε x is a proper suffix of v.

• Example: S = aabca

• The suffixes of S are: aabca, abca, bca, ca and a.

• The strings abca, bca, ca and a are proper suffixes of S.

Suffix of S

S

Prefix of S

String Matching

• Knuth-Morris-Pratt (KMP)

• Finite automaton

A naive string matching algorithm

a b a b a c a
b a c b a b a b a b a b a c a b

a b a b a c a
a b a b a c a

a b a b a c a
a b a b a c a

a b a b a c a
a b a b a c a

a b a b a c a
a b a b a c a

a b a b a c a

a a a b a a a b a b a b a c a b b

Improving the naive algorithm

a a a b a b a
T =
P = a a a b a b a

a a a b a b a

Exploiting what we know from pattern

a b a b a c a
T =
P = a b a b a c a

a b a b a a x

a b a b a c a
T = a b a b a b x

a b a b a c a
T = a b a b a c x

a b a b a c a
How much should we shift the pattern? 5

How much should we shift the pattern? 2

a b a b a c a

a b a b a c a

a b a b a c a

How much should we shift the pattern? 0

x

x

x

Exploiting what we know from pattern

a b a b a c a
T =
P = a b a b a c a

a b a b a a x

a b a b a c a
T = a b a b a b x

a b a b a c a
T = a b a b a c x

a b a b a c a
Which character in the pattern should we compare to x? 2

5

a b a b a c a

a b a b a c a
7

x

x

x

Which character in the pattern should we compare to x?

Which character in the pattern should we compare to x?

Exploiting what we know from pattern

a b a b a c a
T =
P = a b a b a c a

a b a b a a x

a b a b a c a
T = a b a b a b x

a b a b a c a
T = a b a b a c x

a b a b a c a
How much can we “reuse”? 1

4

a b a b a c a

a b a b a c a
6

x

x

x

How much can we “reuse”?

How much can we “reuse”?

Finite Automaton

• Finite automaton: alphabet Σ = {a,b,c}. P = ababaca.

0 1 2 3 4 5 6 7a b a b a c a
a

b

starting state
accepting state

Finite Automaton

Finite Automaton

• Finite automaton: alphabet Σ = {a,b,c}. P = ababaca.

0 1 2 3 4 5 6 7a b a b a c a

a

a a

b

a

b

starting state
accepting state

c

b,c

b,c

c

c

c

Finite Automaton

• Finite automaton: alphabet Σ = {a,b,c}. P = ababaca.

0 1 2 3 4 5 6 7a b a b a c a

a

a a

b

a

b

starting state
accepting state

c

b,c

b,c

c

c

c

Finite Automaton

• Finite automaton: alphabet Σ = {a,b,c}. P = ababaca.

• State j: arc with character goes to state i ≤ j +1 such that
 is the longest prefix of that is a suffix of .

α
P[1..i] P P[1…j] ⋅ α

0 1 2 3 4 5 6 7a b a b a c a

a

a a

b

a

b

starting state
accepting state

a

• Finite automaton: alphabet Σ = {a,b,c}. P = ababaca.

1 2 3 4 5 6 7
b a b a c a

b
b

0

Finite Automaton

a

a a
a

b a c b a b a b a b a b a c a bT =

a

• Finite automaton: alphabet Σ = {a,b,c}. P = ababaca.

1 2 3 4 5 6 7
b a b a c a

b
b

0

Finite Automaton

a

a a
a

b a c b a b a b a b a b a c a bT =

If we are in state j after reading T[1..i],
then

P[1..j] is the longest prefix of P that
is a suffix of T[1..i].

Finite Automaton

T

If we are in state j after reading T[1..i],
then

P[1..j] is the longest prefix of P that
is a suffix of T[1..i].

α

P

i i +1

x

P[1..j’] longest prefix of P that
is a suffix of T[1..i+1]. P[1..j’] longest prefix of P that

is a suffix of P[1..j] . ⋅ α

j

P α
j’

P[1..j’-1] is a prefix of P[1..j].
⇒

Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘aa’ = ‘a’ read ‘a’?

a

a a
a b a b a c aP:

Matched until now:

Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘ac’ = ‘ ’ read ‘c’?

a c
a b a b a c aP:

Matched until now:

a

Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘abb’ = ‘ ’ read ‘b’?

a

a b b
a b a b a c aP:

Matched until now:

Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘abc’ = ‘ ’ read ‘c’?

a

a b c
a b a b a c aP:

Matched until now:

Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘abaa’ = ‘a’ read ‘a’?

a

a

a b a a
a b a b a c aP:

Matched until now:

Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘abac’ = ‘ ’ read ‘c’?

a

a

a b a c
a b a b a c aP:

Matched until now:

Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘ababb’ = ‘ ’ read ‘b’?

a

a

a b a b b
a b a b a c aP:

Matched until now:

Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘ababc’ = ‘ ’ read ‘c’?

a

a

a b a b c
a b a b a c aP:

Matched until now:

Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

read ‘a’?

a

longest prefix of P that is a proper suffix of ‘ababaa’ = ‘a’

a a

a b a b a a
a b a b a c aP:

Matched until now:

Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

read ‘b’?

a

longest prefix of P that is a proper suffix of ‘ababaa’ = ‘abab’

a a

b

a b a b a b
a b a b a c aP:

Matched until now:

Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘ababacb’ = ‘ ’ read ‘b’?

a

a a

b

Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

a

read ‘c’? longest prefix of P that is a proper suffix of ‘ababacc’ = ‘ ’

a a

b

Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘ababacaa’ = ‘a’ read ‘a’?

a

a a

b

a a

Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

a

read ‘b’? longest prefix of P that is a proper suffix of ‘ababacab’ = ‘ab’

a a

b

a a

b

Finite Automaton Construction

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

a

a a

b

read ‘c’? longest prefix of P that is a proper suffix of ‘ababacac’ = ‘ ’

a a

b

Finite Automaton

• Finite automaton:
• Q: finite set of states
• q0 ∈ Q: start state

• A ⊆ Q: set of accepting states

• Σ: finite input alphabet
• δ: transition function

• Matching time: O(n)
• Preprocessing time: O(m3|Σ|). (Can be done in O(m|Σ|)).
• Total time: O(n + m|Σ|)

a b a b a c a

a

a a

b

a

b

KMP

KMP

• Finite automaton: alphabet Σ = {a,b,c}. P = ababaca.

• KMP: Can be seen as finite automaton with failure links:

a b a b a c a

a

a a

b

a

b

a b a b a c a
1 2 3 4 5 6

KMP

• KMP: Can be seen as finite automaton with failure links:

• longest prefix of P that is a suffix of what we have matched until now
(ignore the mismatched character).

a b a b a c a
1 2 3 4 5 6

longest prefix of P that is a proper suffix of ‘aba'

KMP matching

• KMP: Can be seen as finite automaton with failure links:

• longest prefix of P that is a suffix of what we have matched until now.

b a c b a b a b a b a b a c a bT =

a b a b a c a
1 2 3 4 5 6

KMP

• KMP: Can be seen as finite automaton with failure links:

• longest prefix of P that is a proper suffix of what we have matched until
now.

• can follow several failure links when matching one character:

a b a b a aT =

a b a b a c a
1 2 3 4 5 6

KMP Analysis

• Analysis. |T| = n, |P| = m.

• How many times can we follow a forward edge?

• How many backward edges can we follow (compare to forward edges)?

• Total number of edges we follow?

• What else do we use time for?

KMP Analysis

• Lemma. The running time of KMP matching is O(n).

• Each time we follow a forward edge we read a new character of T.

• #backward edges followed ≤ #forward edges followed ≤ n.

• If in the start state and the character read in T does not match the forward
edge, we stay there.

• Total time = #non-matched characters in start state + #forward edges
followed + #backward edges followed ≤ 2n.

• Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

a b a b a c a
1 2 3 4 5 6

longest proper prefix of P that is a suffix of ‘abab'

a b a b
a b a b a c a

Matched until now:

If we are in state j after
reading T[1..i],

then
P[1..j] is the longest prefix of

P that
is a suffix of T[1..i].

• Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

• Computing failure links: Use KMP matching algorithm.

Computation of failure links

longest prefix of P that is a proper suffix of ‘abab'

a b a b a c a
1 2 3 4 5 6

• Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

• Computing failure links: Use KMP matching algorithm.

Computation of failure links

longest prefix of P that is a suffix of ‘bab'

a b a b a c a
1 2 3 4 5 6

If we are in state j after
reading T[1..i],

then
P[1..j] is the longest prefix of

P that
is a suffix of T[1..i].

• Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

• Computing failure links: Use KMP matching algorithm.

Computation of failure links

a b a b a c a
1 2 3 4 5 6

longest prefix of P that is a suffix of ‘bab'

a b a b a c a
1 2 3 4 5 6

Can be found by using KMP to match ‘bab'

If we are in state j after
reading T[1..i],

then
P[1..j] is the longest prefix of

P that
is a suffix of T[1..i].

• Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

• Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

bT =

a b a b a c a
1 2 3 4 5 6

• Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

• Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

b aT =

a b a b a c a
1 2 3 4 5 6

• Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

• Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

b a bT =

a b a b a c a
1 2 3 4 5 6

• Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

• Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

b a b aT =

a b a b a c a
1 2 3 4 5 6

• Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

• Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

b a b a cT =

a b a b a c a
1 2 3 4 5 6

• Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

• Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

b a b a c aT =

a b a b a c a
1 2 3 4 5 6

• Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

• Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

1 2 3 4 5 6 7

a b a b a c aP =

a b a b a c a
1 2 3 4 5 6

KMP

• Computing π: As KMP matching algorithm (only need π values that are
already computed).

• Running time: O(n + m):

• Lemma. Total number of comparisons of characters in KMP is at most 2n.

• Corollary. Total number of comparisons of characters in the preprocessing
of KMP is at most 2m.

KMP: the π array

• π array: A representation of the failure links.

• Takes up less space than pointers.

a b a b a c a

i 1 2 3 4 5 6 7

π[i] 0 0 1 2 3 0 1

1 2 3 4 5 6

