String Matching

Inge Li Gørtz

CLRS 32

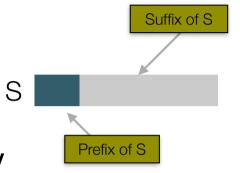
String Matching

- String matching problem:
 - string T (text) and string P (pattern) over an alphabet Σ .
 - |T| = n, |P| = m.
 - Report all starting positions of occurrences of P in T.

P = a b a b a c a
T = b a c b a b a b a b a c a b

Strings

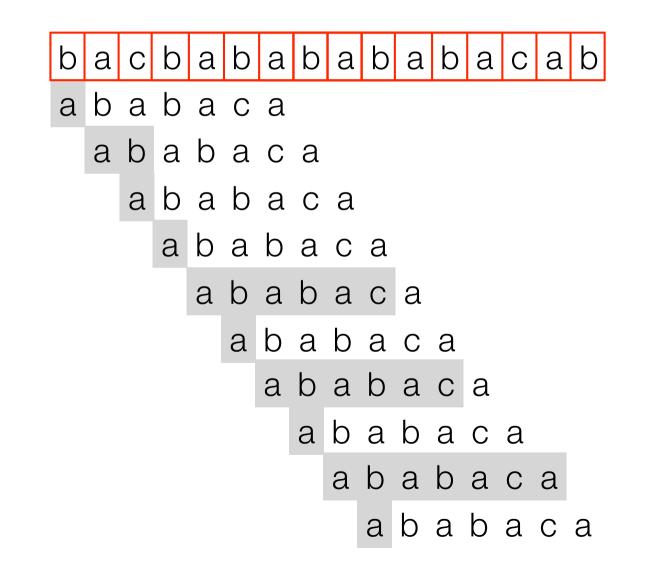
- ε: empty string
- prefix/suffix: v=xy:
 - x prefix of v, if $y \neq \varepsilon x$ is a proper prefix of v
 - y suffix of v, if $y \neq \varepsilon x$ is a proper suffix of v.
- Example: S = aabca
 - The suffixes of S are: aabca, abca, bca, ca and a.
 - The strings abca, bca, ca and a are proper suffixes of S.



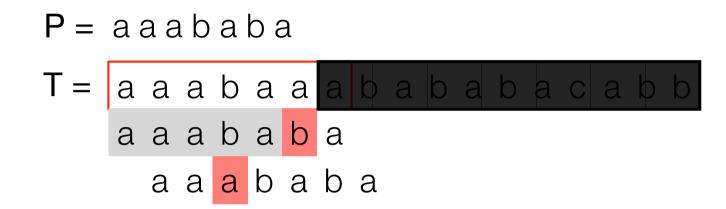
String Matching

- Knuth-Morris-Pratt (KMP)
- Finite automaton

A naive string matching algorithm

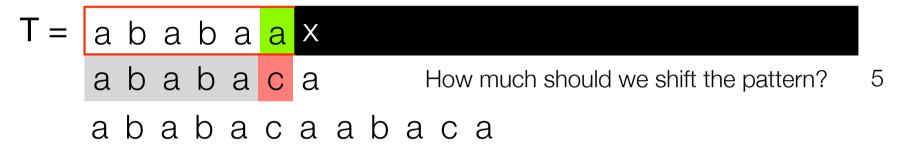


Improving the naive algorithm



Exploiting what we know from pattern

P = ababaca



 T =
 a b a b a b a b a
 b
 ×

 a b a b a c
 a
 b a c
 A
 b
 A
 c
 A
 How much should we shift the pattern?
 2

 a b a b a b a b a b a b
 a c a
 A
 a c a
 A
 a c a
 A
 b
 a c a
 a c a
 A
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a c a
 b
 a
 c a
 a c a
 b
 a c a
 c a
 a c a
 c a
 a c a
 c a
 a c a
 c a
 a c a
 c a
 a c a
 c a
 a c a
 c a
 a c a
 c a
 a c a
 c a
 a c a
 c a
 a c a
 c a
 <th

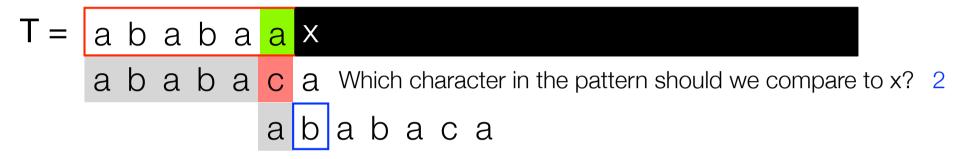
How much should we shift the pattern?

0



Exploiting what we know from pattern

P = ababaca



 T =
 a b a b a b a b x

 a b a b a c a
 c a Which character in the pattern should we compare to x? 5

 a b a b a b a b a c a

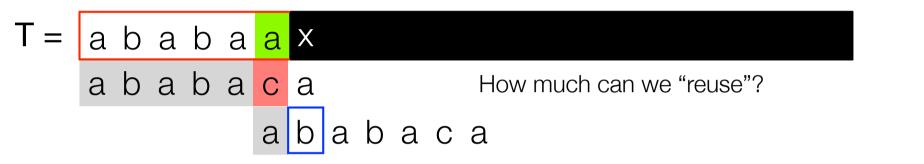
 T =
 a b a b a c
 X

 a b a b a c
 a
 Which character in the pattern should we compare to x?
 7

 a b a b a c
 a

Exploiting what we know from pattern

P = ababaca



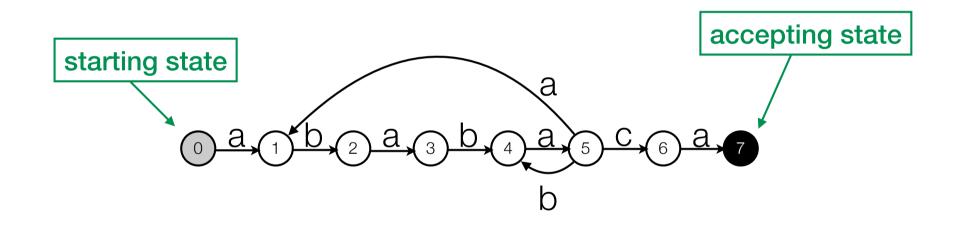


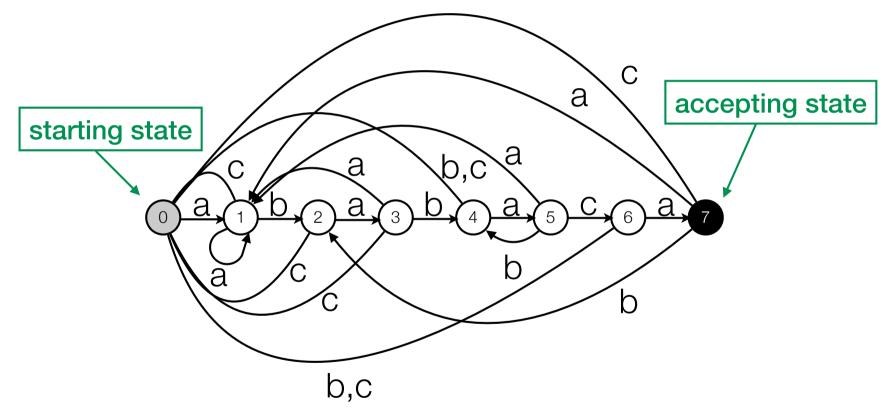
How much can we "reuse"?

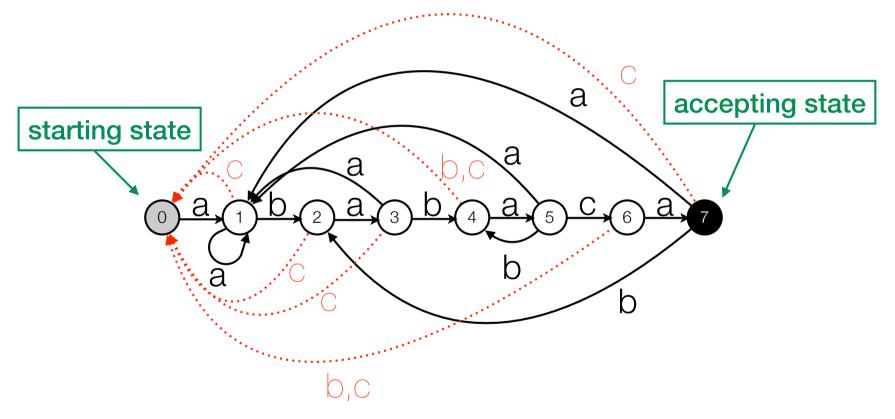
T = ababac× ababaca ababaca

6

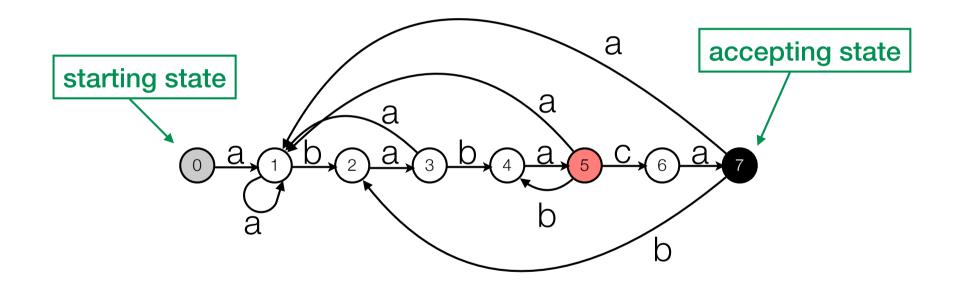
1





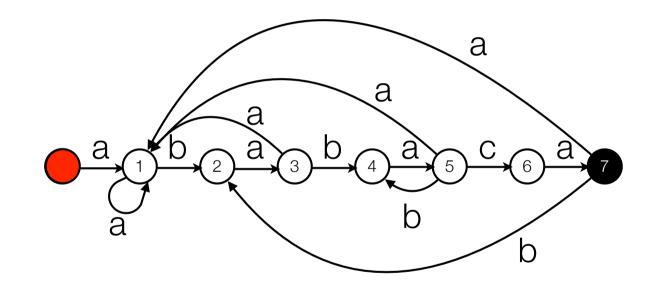


• Finite automaton: alphabet $\Sigma = \{a, b, c\}$. P = ababaca.



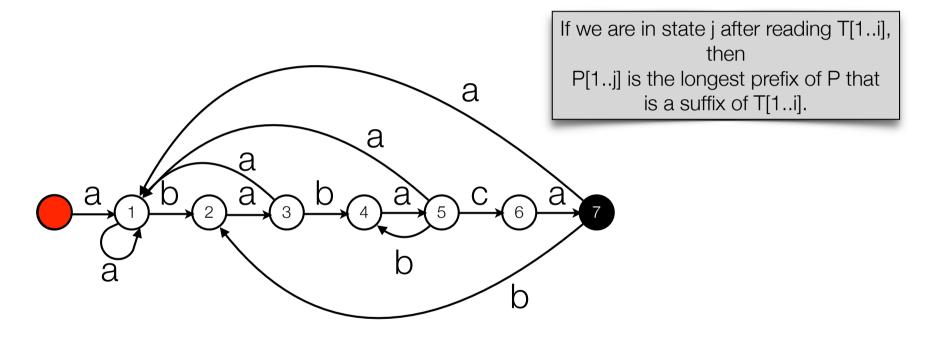
• State j: arc with character α goes to state i \leq j +1 such that P[1...i] is the longest prefix of P that is a suffix of $P[1...j] \cdot \alpha$.

• Finite automaton: alphabet $\Sigma = \{a, b, c\}$. P = ababaca.

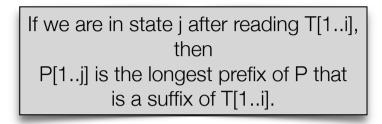


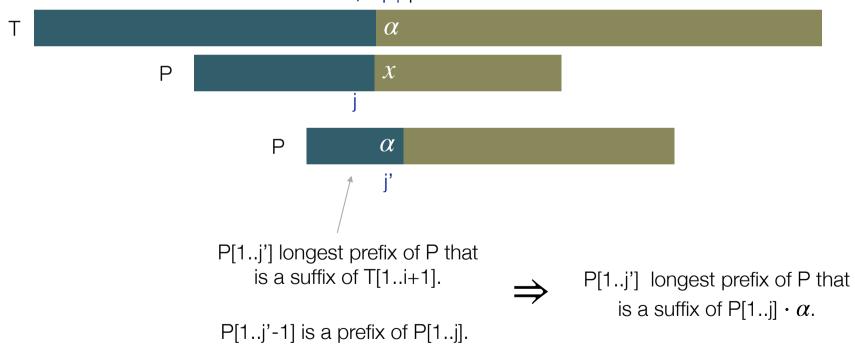
T = bacbababababacab

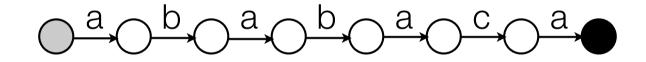
• Finite automaton: alphabet $\Sigma = \{a, b, c\}$. P = ababaca.

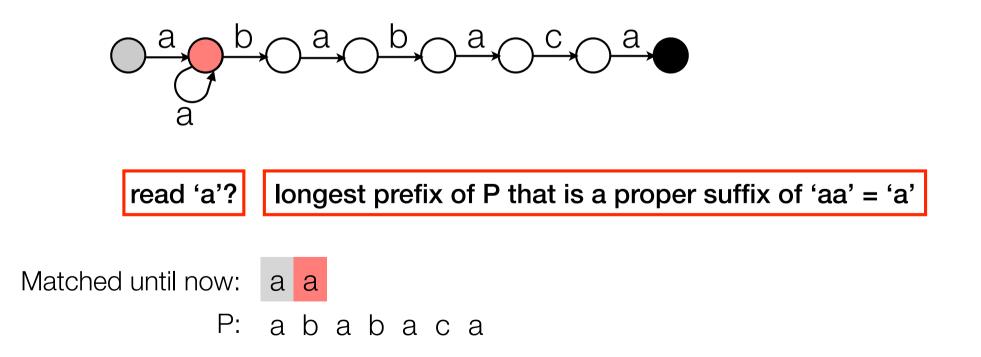


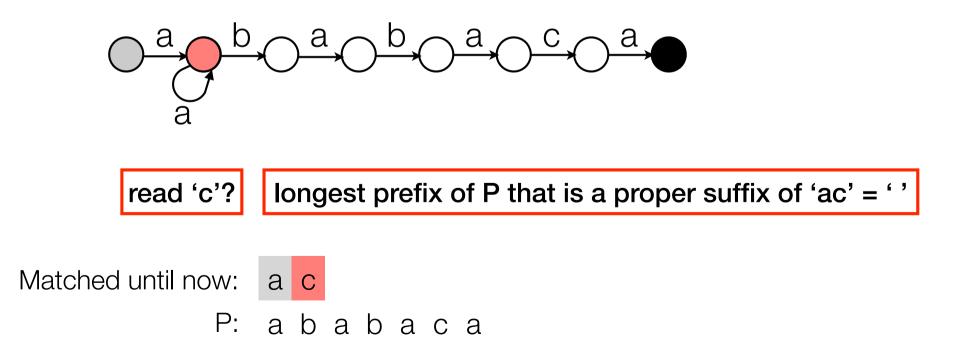
T = b a c b a b a b a b a c a b

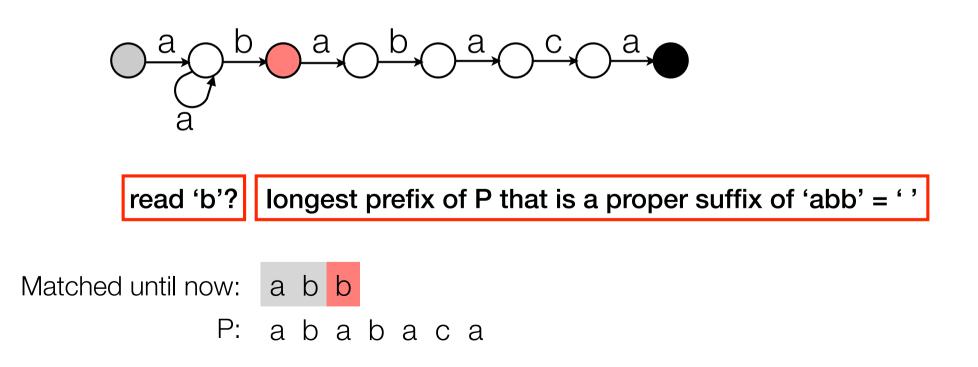


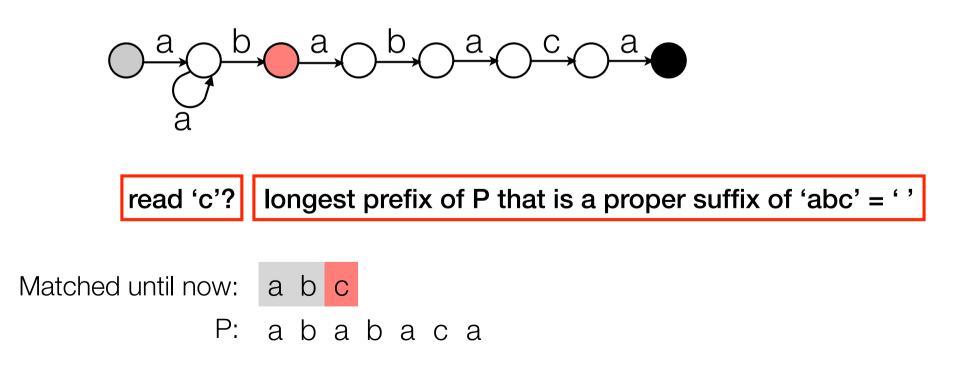


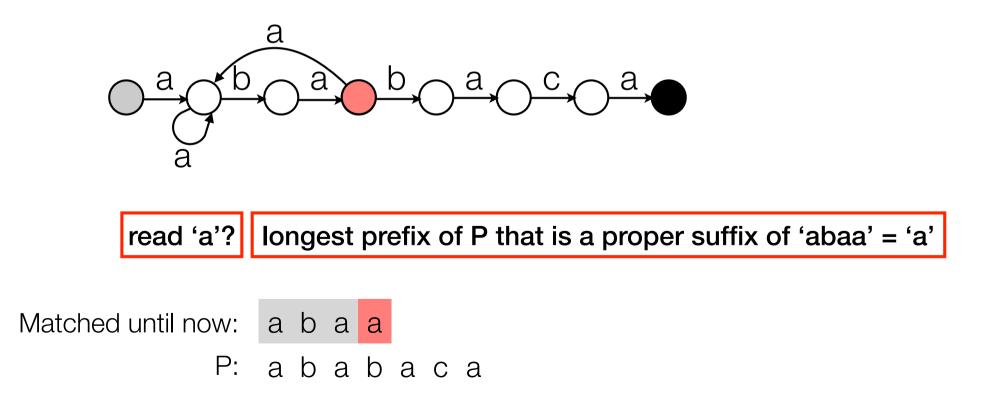


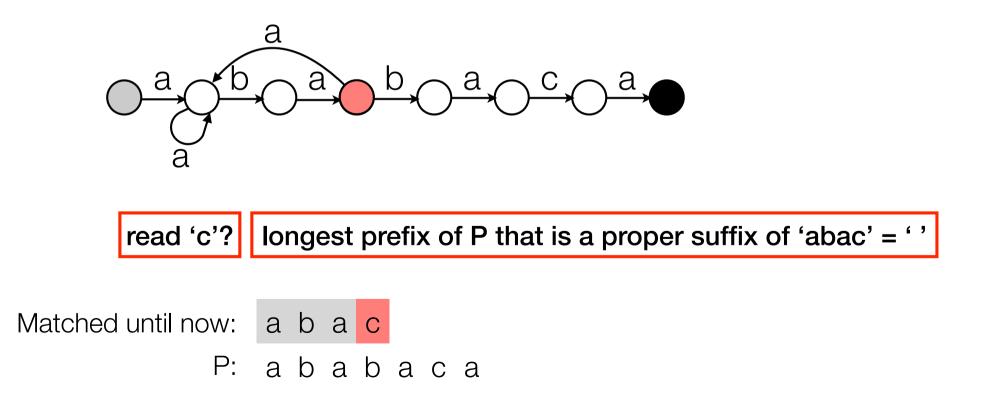


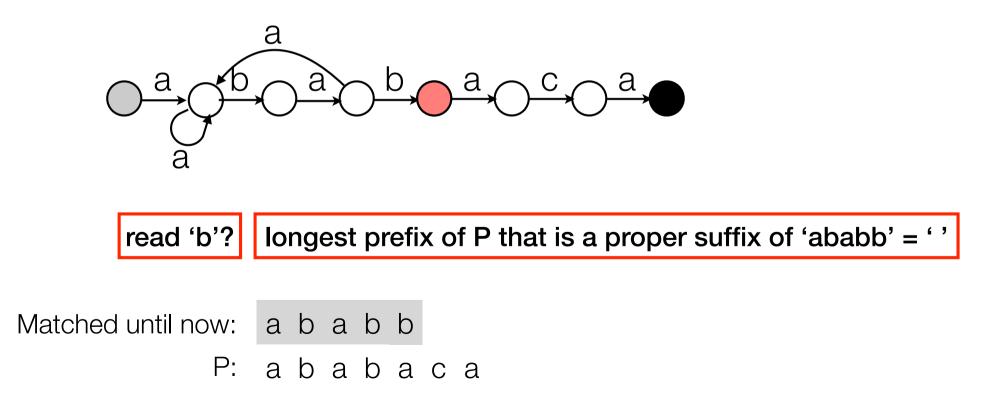


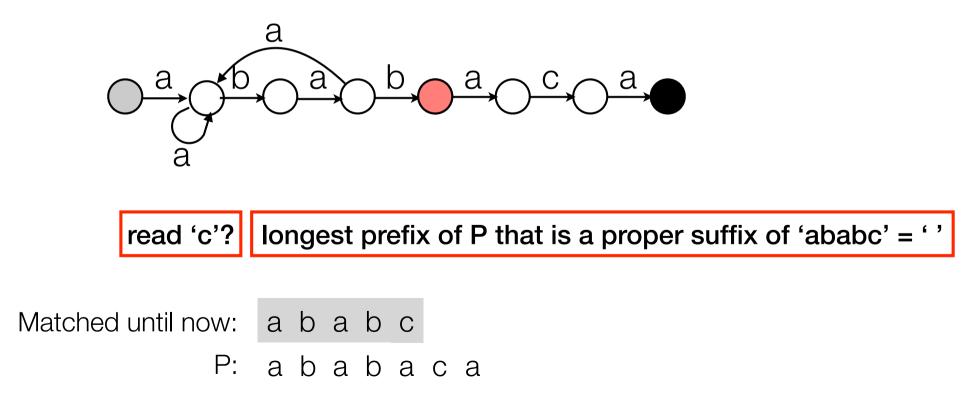


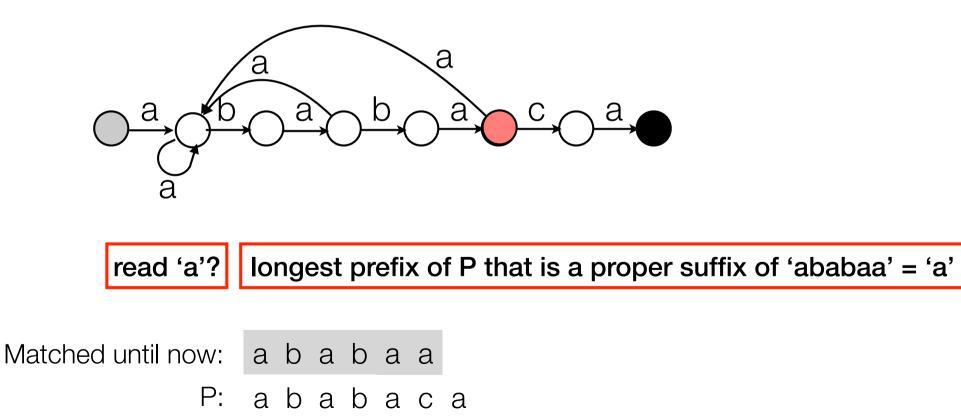




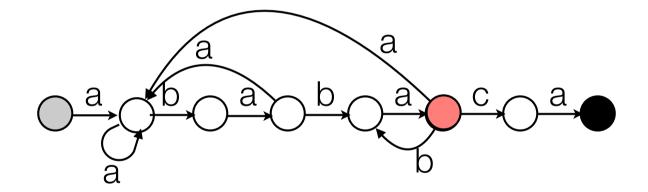








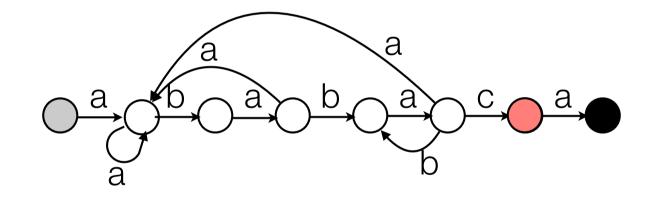
• Finite automaton: alphabet $\Sigma = \{a, b, c\}$. P= ababaca.



read 'b'? Iongest prefix of P that is a proper suffix of 'ababaa' = 'abab'

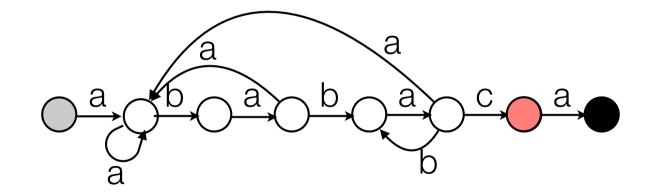
Matched until now: a b a b a b P: a b a b a c a

• Finite automaton: alphabet $\Sigma = \{a, b, c\}$. P= ababaca.



read 'b'? Iongest prefix of P that is a proper suffix of 'ababacb' = ' '

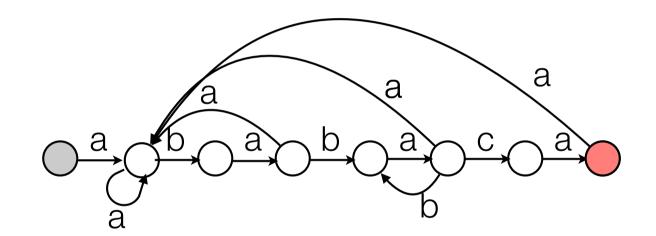
• Finite automaton: alphabet $\Sigma = \{a, b, c\}$. P= ababaca.



read 'c'?

longest prefix of P that is a proper suffix of 'ababacc' = ' '

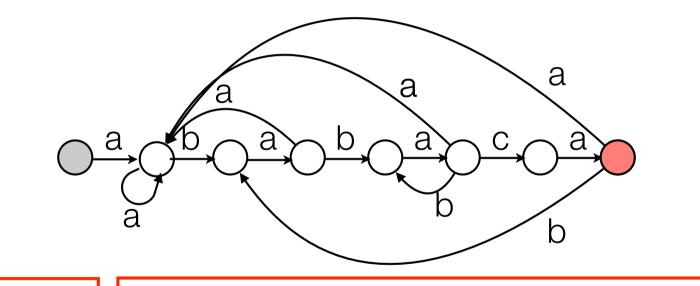
• Finite automaton: alphabet $\Sigma = \{a, b, c\}$. P= ababaca.



read 'a'?

longest prefix of P that is a proper suffix of 'ababacaa' = 'a'

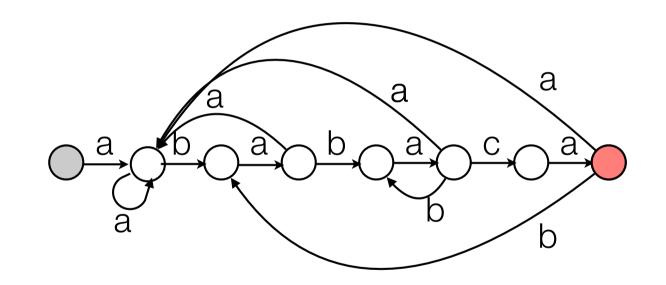
• Finite automaton: alphabet $\Sigma = \{a, b, c\}$. P= ababaca.



read 'b'? Iongest prefix of P that is a proper suffix of 'ababacab' = 'ab'

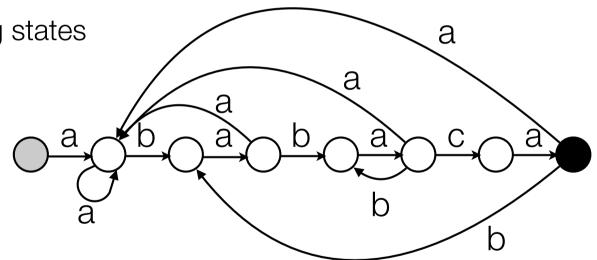
read 'c'?

• Finite automaton: alphabet $\Sigma = \{a, b, c\}$. P= ababaca.



longest prefix of P that is a proper suffix of 'ababacac' = ' '

- Finite automaton:
 - Q: finite set of states
 - $q_0 \in Q$: start state
 - A ⊆ Q: set of accepting states
 - Σ: finite input alphabet
 - δ: transition function

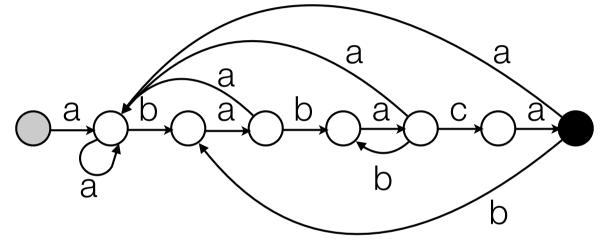


- Matching time: O(n)
- Preprocessing time: $O(m^3|\Sigma|)$. (Can be done in $O(m|\Sigma|)$).
- Total time: $O(n + m|\Sigma|)$

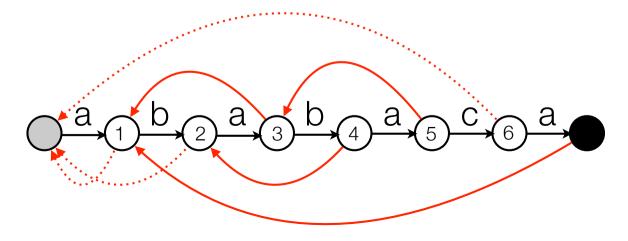
KMP

KMP

• Finite automaton: alphabet $\Sigma = \{a, b, c\}$. P = ababaca.

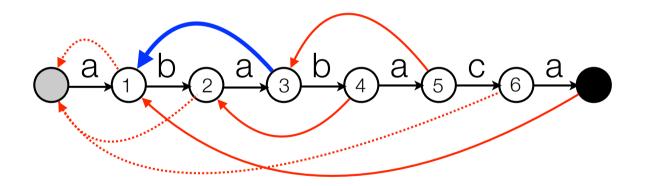


• KMP: Can be seen as finite automaton with *failure links*:



KMP

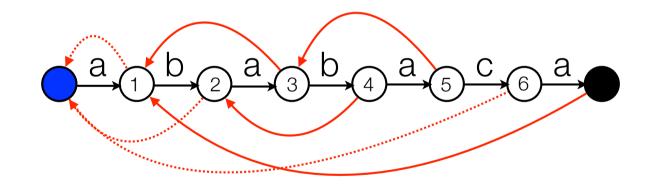
- KMP: Can be seen as finite automaton with *failure links*:
 - longest prefix of P that is a suffix of what we have *matched* until now (ignore the mismatched character).



longest prefix of P that is a proper suffix of 'aba'

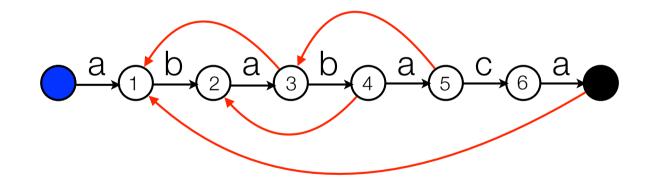
KMP matching

- KMP: Can be seen as finite automaton with *failure links*:
 - longest prefix of P that is a suffix of what we have *matched* until now.



KMP

- KMP: Can be seen as finite automaton with *failure links*:
 - longest prefix of P that is a proper suffix of what we have matched until now.
 - can follow several failure links when matching one character:



KMP Analysis

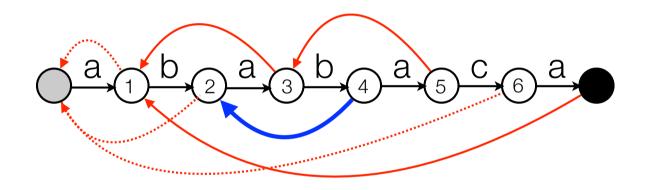
- Analysis. |T| = n, |P| = m.
 - How many times can we follow a forward edge?
 - How many backward edges can we follow (compare to forward edges)?
 - Total number of edges we follow?
 - What else do we use time for?

KMP Analysis

- Lemma. The running time of KMP matching is O(n).
 - Each time we follow a forward edge we read a new character of T.
 - #backward edges followed \leq #forward edges followed \leq n.
 - If in the start state and the character read in T does not match the forward edge, we stay there.
 - Total time = #non-matched characters in start state + #forward edges followed + #backward edges followed ≤ 2n.

If we are in state j after reading T[1..i], then P[1..j] is the longest prefix of P that is a suffix of T[1..i].

• Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.

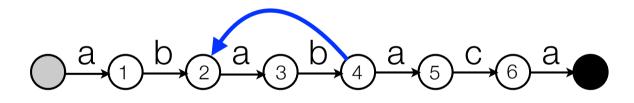


longest proper prefix of P that is a suffix of 'abab'

Matched until now:ababababaca

- Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.
- Computing failure links: Use KMP matching algorithm.

longest prefix of P that is a proper suffix of 'abab'



• Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.

а

• Computing failure links: Use KMP matching algorithm.

longest prefix of P that is a suffix of 'bab'

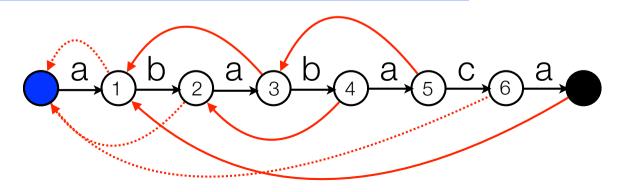
If we are in state j after reading T[1..i], then P[1..j] is the longest prefix of P that is a suffix of T[1..i].

- Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.
- Computing failure links: Use KMP matching algorithm.

longest prefix of P that is a suffix of 'bab'

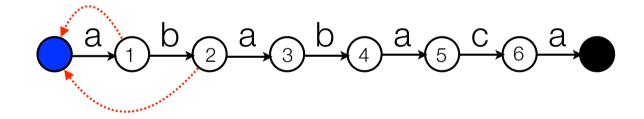
If we are in state j after reading T[1..i], then P[1..j] is the longest prefix of P that is a suffix of T[1..i].

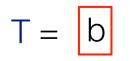
Can be found by using KMP to match 'bab'



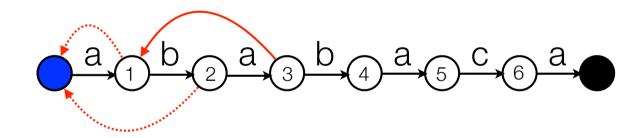
а

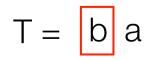
- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.



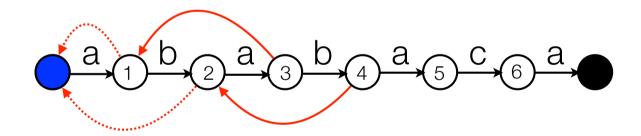


- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.

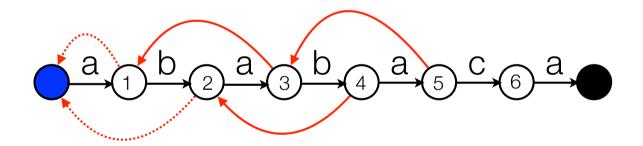




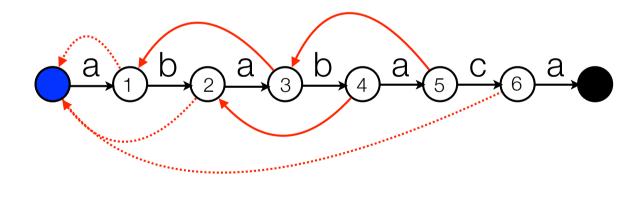
- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.



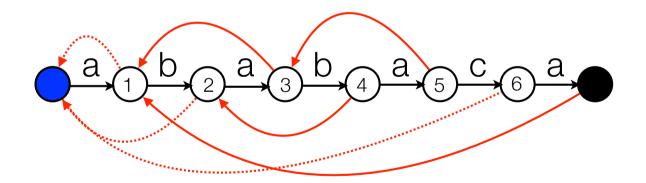
- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.



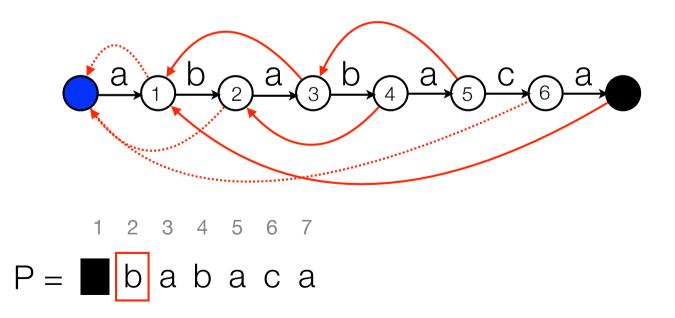
- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.



- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.



- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.



KMP

- Computing π: As KMP matching algorithm (only need π values that are already computed).
- Running time: O(n + m):
 - Lemma. Total number of comparisons of characters in KMP is at most 2n.
 - Corollary. Total number of comparisons of characters in the preprocessing of KMP is at most 2m.

KMP: the π array

- π array: A representation of the failure links.
- Takes up less space than pointers.

i	1	2	3	4	5	6	7
π[i]	0	0	1	2	3	0	1

