String Matching

e String matching problem:
e string T (text) and string P (pattern) over an alphabet 2.
String Matching e [T|=n, |P|=m.

Inge Li Gortz * Report all starting positions of occurrences of P in T.

P=ababaca
T=bacbababababacab

CLRS 32
Strings String Matching
_ [sumxrs | ,
+ £ empty string e Knuth-Morris-Pratt (KMP)
« prefix/suffix: v=xy: s il

* x prefix of v, if y # € X is a proper prefix of v ECTEE * Finite automaton
* y suffix of v, if y # € X is a proper suffix of v.

- Example: S = aabca
 The suffixes of S are: aabca, abca, beca, ca and a.

* The strings abca, beca, ca and a are proper suffixes of S.

A naive string matching algorithm

[bla|c|bla[blalb|albla|blalc|alb]
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca

ababaca

Improving the naive algorithm

P=aaababa

T=la a ab a o N

aaabalba
aaababa

Exploiting what we know from pattern

P=ababaca

T=a b a b 2l KSR

ababaca How much should we shift the pattern?
ababacalabaca
T=|labab ab}s
ababaca How much should we shift the pattern?
ababaca

T=lababack

ababaca How much should we shift the pattern?
ababaca

Finite Automaton

Finite Automaton

e Finite automaton: alphabet 2 = {a,b,c}. P = ababaca.

Finite Automaton

Finite Automaton

¢ Finite automaton: alphabet 2 = {a,b,c}. P = ababaca.

Matched untinow: a b a b a a
ababaca

Finite Automaton

¢ Finite automaton: alphabet > = {a,b,c}. P = ababaca.

starting state

o
@,
a

Matched untinow: a b a b a b
ababaca

Finite Automaton

e Finite automaton: alphabet 2 = {a,b,c}. P = ababaca.

e State j: arc with character a goes to state i < j +1 such that
P[1..i] is the longest prefix of P that is a suffix of P[1...j] - a.

Finite Automaton

¢ Finite automaton: alphabet 2 = {a,b,c}. P = ababaca.

Tzﬁacbababababacab

Finite Automaton

¢ Finite automaton: alphabet 2 = {a,b,c}. P = ababaca.

then
P[1..j] is the longest prefix of P that
is a suffix of T[1..i].

If we are in state j after reading T[1..i],

T=|E|acbababababaoab

Finite Automaton Construction

¢ Finite automaton: alphabet > = {a,b,c}. P= ababaca.

0202020200 %0%e

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

Oagbcacbcaccca.

a

|read ‘a’?l | longest prefix of P that is a proper suffix of ‘aa’ = ‘a’

Matched until now: ala
P ababaca

Finite Automaton Construction

¢ Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

Oagbcacbcaocoa.

a

|read ‘c’?l | longest prefix of P that is a proper suffix of ‘ac’ = *’

Matched untilnow: a €
P ababaca

Finite Automaton Construction

¢ Finite automaton: alphabet > = {a,b,c}. P= ababaca.

Oa;bcacbcaccoa.

a

|read ‘b’?l | longest prefix of P that is a proper suffix of ‘abb’ =

Matched untilnow: a b b
P: ababaca

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

Oa;bcacbcaooca.

a

|read ‘c’?l | longest prefix of P that is a proper suffix of ‘abc’ = *’

Matched until now: a b ¢
P ababaca

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

a
o:@otﬁﬁ
a

|read ‘a’?“ longest prefix of P that is a proper suffix of ‘abaa’ = ‘a’

Matched untinow: a b a a
P ababaca

Finite Automaton Construction

¢ Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

a
o.&@o'cc
a

|read ‘c’?l | longest prefix of P that is a proper suffix of ‘abac’ = *’

Matched untiinow: a b a ¢
P ababaca

Finite Automaton Construction

¢ Finite automaton: alphabet > = {a,b,c}. P= ababaca.

a
o e T o LYo LIGtIGE

a

|read ‘b’?l | longest prefix of P that is a proper suffix of ‘ababb’ =

Matched untinow: a b a b b
P: ababaca

Finite Automaton Construction

¢ Finite automaton: alphabet > = {a,b,c}. P= ababaca.

a
o iNe T oLV LhGIIGE

a

|read ‘c’?l | longest prefix of P that is a proper suffix of ‘ababc’ = *’

Matched untinow: a b a b ¢
P ababaca

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

|read ‘a’?l | longest prefix of P that is a proper suffix of ‘ababaa’ = ‘a’

Matched untinow: a b a b a a
P: ababaca

Finite Automaton Construction

¢ Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

|read ‘b’?l | longest prefix of P that is a proper suffix of ‘ababaa’ = ‘abab’

Matched untinow: a b a b a b
P ababaca

Finite Automaton Construction

¢ Finite automaton: alphabet > = {a,b,c}. P= ababaca.

|read ‘b’?l | longest prefix of P that is a proper suffix of ‘ababacb’ = *

Finite Automaton Construction

¢ Finite automaton: alphabet > = {a,b,c}. P= ababaca.

|read ‘c’?l | longest prefix of P that is a proper suffix of ‘ababacc’ = *’

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

|read ‘a’?l | longest prefix of P that is a proper suffix of ‘ababacaa’ = ‘a’

Finite Automaton Construction

¢ Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

C‘M‘Q.
a

|read ‘b’?l | longest prefix of P that is a proper suffix of ‘ababacab’ = ‘ab’

Finite Automaton Construction

¢ Finite automaton: alphabet > = {a,b,c}. P= ababaca.

|read ‘c’?l | longest prefix of P that is a proper suffix of ‘ababacac’ = *’

Finite Automaton

e Finite automaton:
e Q: finite set of states

® o € Q: start state

e A ¢ Q: set of accepting states
e 3. finite input alphabet

e §: transition function

e Matching time: O(n)
¢ Preprocessing time: O(m3|%]). (Can be done in O(M|Z])).

e Total time: O(n + m|Z])

KMP

KMP

¢ Finite automaton: alphabet > = {a,b,c}. P = ababaca.

KMP

e KMP: Can be seen as finite automaton with failure links:

e longest prefix of P that is a suffix of what we have matched until now
(ignore the mismatched character).

| longest prefix of P that is a proper suffix of ‘aba’ |

KMP matching

e KMP: Can be seen as finite automaton with failure links:

e |ongest prefix of P that is a suffix of what we have matched until now.

Tzﬁacbababababacab

KMP

e KMP: Can be seen as finite automaton with failure links:

e longest prefix of P that is a proper suffix of what we have matched until
now.

e can follow several failure links when matching one character:

KMP Analysis

* Analysis. [T|=n, |P|=m.
» How many times can we follow a forward edge?
» How many backward edges can we follow (compare to forward edges)?
- Total number of edges we follow?

+ What else do we use time for?

KMP Analysis

» Lemma. The running time of KMP matching is O(n).
+ Each time we follow a forward edge we read a new character of T.
+ #backward edges followed < #forward edges followed < n.

- If in the start state and the character read in T does not match the forward
edge, we stay there.

« Total time = #non-matched characters in start state + #forward edges
followed + #backward edges followed < 2n.

Computation of failure links

« Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

| longest prefix of P that is a suffix of ‘abab’ |

Matched untiinow: a b a b
ababaca

Computation of failure links

« Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

+ Computing failure links: Use KMP matching algorithm.

| longest prefix of P that is a proper suffix of ‘abab’ |

oce@eee

Computation of failure links

+ Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

. If we are in state j after
+ Computing failure links: Use KMP matching algorithm. reading T[1..1,
then
- - - P[1..]] is the longest prefix of
| longest prefix of P that is a suffix of ‘bab’ | P that
is a suffix of T[1..[].

oaaae%ee

Computation of failure links

« Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

. If we are in state j after
» Computing failure links: Use KMP matching algorithm. reading T[1..I,
then
- - - P[1..j] is the longest prefix of
| longest prefix of P that is a suffix of ‘bab’ | P that

is a suffix of T[1..i].
a~b La ~byYya ~c ~a
O—O—==A)=

|Can be found by using KMP to match ‘bab'|

Computation of failure links

+ Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

+ Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

+ Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

« Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

+ Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

« Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

» Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

» Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

+ Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

+ Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

12 3 4 5 6 7

P:@babaca

Computation of failure links

+ Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

« Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

+ Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

« Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

» Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

» Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

+ Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

+ Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

12 3 4 5 6 7

P:.@abaca

KMP KMP: the 1t array

» Computing : As KMP matching algorithm (only need it values that are + Tt array: A representation of the failure links.

already computed).
- Takes up less space than pointers.
* Running time: O(n + m):

» Lemma. Total number of comparisons of characters in KMP is at most 2n. i |1(2]|3[4]|5[6]|7

« Corollary. Total number of comparisons of characters in the preprocessing nf] [o]of1]2[3]0f1
of KMP is at most 2m.

