String Matching

Inge Li Gartz

CLRS 32

String Matching

e String matching problem:
e string T (text) and string P (pattern) over an alphabet 2.
¢ |T|=n, [Pl =m.

e Report all starting positions of occurrences of P in T.

P=ababaca
IT=bacbababababacab

Strings
[sufixors |

- €. empty string
- prefix/suffix: v=xy: s Il
* X prefix of v, if y # € X Is a proper prefix of v [Prefors |

* y suffix of v, if y # € X is a proper suffix of v.
« Example: S = aabca,
« The suffixes of S are: aabca, abca, bca, ca and a.

« The strings abca, beca, ca and a are proper suffixes of S.

String Matching

e Knuth-Morris-Pratt (KMP)

¢ Finite automaton

A naive string matching algorithm

blajc|/blal|blalblalblalbla|c|a|b
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca

ababaca

Improving the naive algorithm

P=aaababa

T=la aab a

aaababa
aaababa

Exploiting what we know from pattern

P=ababaca

T=|labab aal
ababaca How much should we shift the pattern?

ababacaabaca

T=|labababl
ababaca How much should we shift the pattern?

ababaca

T=|ababach
ababaca How much should we shift the pattern?
ababaca

Finite Automaton

Finite Automaton

e Finite automaton: alphabet 2 = {a,b,c}. P = ababaca.

starting state

Finite Automaton

e Finite automaton: alphabet 2 = {a,b,c}. P = ababaca.

...........
......

[N "

. .

accepting state

starting state | .-

.

.

. .

.
.
.
.
.
.
. .
. .
. -

Finite Automaton

e Finite automaton: alphabet 2 = {a,b,c}. P = ababaca.

starting state %
) “M

read ‘a’?

Matched untinow: a b a b a a
ababaca

accepting state

/

Finite Automaton

e Finite automaton: alphabet 2 = {a,b,c}. P = ababaca.

starting state %
) “M

read ‘b’?

Matched untinow: a b a b a b
ababaca

accepting state

/

Finite Automaton

e Finite automaton: alphabet 2 = {a,b,c}. P = ababaca.

accepting state

/

starting state &
\ .
e a@ee.ea
b

e State |: arc with character a goes to state i < j +1 such that
P[1..i] is the longest prefix of P that is a suffix of P[1...j] - a.

Finite Automaton

e Finite automaton: alphabet 2 = {a,b,c}. P = ababaca.

T=|blacbababababacahb

Finite Automaton

e Finite automaton: alphabet 2 = {a,b,c}. P = ababaca.

If we are in state j after reading T[1..1],
then

P[1..]] is the longest prefix of P that

is a suffix of T[1..i].

T=|blacbababababacahb

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

CaCbCaCbCaOCOa'

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

Oa;bcacbca)@c@a'
a

read ‘a’?| | longest prefix of P that is a proper suffix of ‘aa’ = ‘a’

Matched until now: a a
P. ababaca

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

Oa;bcacbca)@c@a'
a

read ‘c’?| |longest prefix of P that is a proper suffix of ‘ac’ = *’

Matched until now: a ¢
P. ababaca

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

Cagbcacbca)@c@a'
a

read ‘b’?

longest prefix of P that is a proper suffix of ‘abb’ = *’

Matched until now:

P:

abb
ababaca

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

Cagbcacbca)@c@a'
a

read ‘c’?

longest prefix of P that is a proper suffix of ‘abc’ = *’

Matched until now:

P:

a b c
ababaca

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

d

Oa?bgabb)@a@c@a'

a

read ‘a’?

longest prefix of P that is a proper suffix of ‘abaa’ = ‘a’

Matched until now:

P:

ab aa
ababaca

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

d

Ca?bgabb)@a@c@a'

a

read ‘c’?

longest prefix of P that is a proper suffix of ‘abac’ = *’

Matched until now:

P:

ab ac
ababaca

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

read ‘b’?

longest prefix of P that is a proper suffix of ‘ababb’ = *"’

Matched until now:

P:

ababb
ababaca

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

read ‘c’?

longest prefix of P that is a proper suffix of ‘ababc’ = *’

Matched until now:

P:

ababoc
ababaca

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

read ‘a’?

longest prefix of P that is a proper suffix of ‘ababaa’ = ‘a’

Matched until now:

P:

ababaa
ababaca

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

read ‘b’?|| longest prefix of P that is a proper suffix of ‘ababaa’ = ‘abab’

Matched untiinow: a b a b a b
P. ababaca

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

longest prefix of P that is a proper suffix of ‘ababacb’ = *’

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

longest prefix of P that is a proper suffix of ‘ababacc’ = *’

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

read ‘a’?

longest prefix of P that is a proper suffix of ‘ababacaa’ = ‘a’

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

read ‘b’?

longest prefix of P that is a proper suffix of ‘ababacab’ = ‘ab’

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

read ‘c’?

longest prefix of P that is a proper suffix of ‘ababacac’ = *’

Finite Automaton

e Finite automaton:
e (Q: finite set of states

e o € Q: start state

e A C Q: set of accepting states

¢ > finite input alphabet

e O: transition function

e Matching time: O(n)
* Preprocessing time: O(m?3[Z]). (Can be done in O(m[Z])).

e Total time: O(n + m|X|)

KMP

KMP

e Finite automaton: alphabet > = {a,b,c}. P = ababaca.

KMP

e KMP: Can be seen as finite automaton with failure links:

¢ |ongest prefix of P that is a suffix of what we have matched until now
(ignore the mismatched character).

longest prefix of P that is a proper suffix of ‘aba’

KMP matching

e KMP: Can be seen as finite automaton with failure links:

e |ongest prefix of P that is a suffix of what we have matched until now.

T=|blacbababababacahb

KMP

e KMP: Can be seen as finite automaton with failure links:

e |ongest prefix of P that is a proper suffix of what we have matched until
NOW.

e can follow several failure links when matching one character:

850@8

T=|albabaa

KMP Analysis

* Analysis. |[T| =n, |P| =m.
- How many times can we follow a forward edge?
- How many backward edges can we follow (compare to forward edges)?
- Total number of edges we follow?

« What else do we use time for?

KMP Analysis

« Lemma. The running time of KMP matching is O(n).
- Each time we follow a forward edge we read a new character of T.
- #backward edges followed < #forward edges followed < n.

 If in the start state and the character read in T does not match the forward
edge, we stay there.

- Total time = #non-matched characters in start state + #forward edges
followed + #backward edges followed < 2n.

Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

longest prefix of P that is a suffix of ‘abab’

Matched untinow: a b a b
ababaca

Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

- Computing failure links: Use KMP matching algorithm.

longest prefix of P that is a proper suffix of ‘abalb’

o—»o—o’ibo—oababaﬁ@ao

Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

. : _ _ _ If we are in state j after
- Computing failure links: Use KMP matching algorithm. reading T[1..i],
then

. . , P[1..j] is the longest prefix of
longest prefix of P that is a suffix of ‘bab’ P that

is a suffix of T[1..i].
a b a b a C a
05202000008 |

Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

. : _ _ _ If we are in state j after
- Computing failure links: Use KMP matching algorithm. reading T[1..i],
then

. . , P[1..j] is the longest prefix of
longest prefix of P that is a suffix of ‘bab’ P that

is a suffix of T[1..i].
a b a b a C a
05202000008 |

Can be found by using KMP to match ‘bab’

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

- Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

e
O

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

- Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

- Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

- Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

P=|bla b a

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

- Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

P=|albabaca

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

- Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

- Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

- Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Cacbocoa@ a)@b)@&‘

1 2 3 4 5 6 7

P=- abcaabc

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

- Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

KMP

« Computing : As KMP matching algorithm (only need 1t values that are
already computed).

* Running time: O(n + m):

- Lemma. Total number of comparisons of characters in KMP is at most 2n.

 Corollary. Total number of comparisons of characters in the preprocessing
of KMP is at most 2m.

KMP: the 1t array

- 11 array: A representation of the failure links.

- Takes up less space than pointers.

mil |olof1|2]|3]|0]1

