
Randomized Algorithms II

Randomized algorithms
• Last weeks

• Contention resolution

• Global minimum cut

• Today

• Expectation of random variables

• Guessing cards

• Selection

• Quicksort

🎲🎲

🂦🂨🂹

Random Variables and Expectation

Random variables
• A random variable is an entity that can assume different values.

• The values are selected “randomly”; i.e., the process is governed by a probability distribution.

• Examples: Let X be the random variable “number shown by dice”.

• X can take the values 1, 2, 3, 4, 5, 6.

• If it is a fair dice then the probability that X = 1 is 1/6:

• Pr[X=1] = 1/6.

• Pr[X=2] = 1/6.

• …

Expected values
• Let X be a random variable with values in {x1,…xn}, where xi are numbers.

• The expected value (expectation) of X is defined as

• The expectation is the theoretical average.

• Example:

• X = random variable “number shown by dice”

 E[X] =
6

∑
j=1

j ⋅ Pr[X = j] = (1 + 2 + 3 + 4 + 5 + 6) ⋅
1
6

= 3.5

E[X] =
n

∑
j=1

xj ⋅ Pr[X = xj]

Waiting for a first succes
• Coin flips. Coin is heads with probability and tails with probability . How many independent

flips X until first heads?

• Probability of ? (first succes is in round)

• Expected value of :

p 1 − p

X = j j
Pr[X = j] = (1 − p) j−1 ⋅ p

X

E[X] =
∞

∑
j=1

j ⋅ Pr[X = j]

 for .
∞

∑
k=0

k ⋅ xk =
x

(1 − x)2
|x | < 1

=
∞

∑
j=1

j ⋅ (1 − p) j−1 ⋅ p =
p

1 − p

∞

∑
j=1

j ⋅ (1 − p) j

=
p

1 − p
⋅

1 − p
p2

=
1
p

Properties of expectation
• If we repeatedly perform independent trials of an experiment, each of which succeeds with

probability , then the expected number of trials we need to perform until the first succes is
.

• If is a 0/1 random variable, then .

• Linearity of expectation: For two random variables X and Y we have

p > 0
1/p

X E[X] = Pr[X = 1]

E[X + Y] = E[X] + E[Y]

Guessing cards
• Game. Shuffle a deck of cards; turn them over one at a time; try to guess each card.

• Memoryless guessing. Can't remember what's been turned over already. Guess a card from full
deck uniformly at random.

• Claim. The expected number of correct guesses is 1.

• if guess correct and zero otherwise.

• the correct number of guesses .

• .

•

n

Xi = 1 ith

X = = X1 + … + Xn

E[Xi] = Pr[Xi = 1] = 1/n

E[X] = E[X1 + ⋯ + Xn] = E[X1] + ⋯ + E[Xn] = 1/n + ⋯ + 1/n = 1.

🂠🂡🂪🃅

🧝
🂪🂪🂡

Guessing cards
• Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

• Guessing with memory. Guess a card uniformly at random from cards not yet seen.

• Claim. The expected number of correct guesses is .

• if guess correct and zero otherwise.

• the correct number of guesses .

• .

•

Θ(log n)

Xi = 1 ith

X = = X1 + … + Xn

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

E[X] = E[X1] + ⋯ + E[Xn] = 1/n + ⋯ + 1/2 + 1/1 = Hn .

ln n < H(n) < ln n + 1

Coupon collector
• Coupon collector. Each box of cereal contains a coupon. There are different types of coupons.

Assuming all boxes are equally likely to contain each coupon, how many boxes before you have at
least 1 coupon of each type?

• Claim. The expected number of steps is .

• Phase = time between and distinct coupons.

• = number of steps you spend in phase .

• = number of steps in total = .

• .

• The expected number of steps:

.

n

Θ(n log n)

j j j + 1

Xj j

X X0 + X1 + ⋯ + Xn−1

E[Xj] = n/(n − j)

E[X] = E[
n−1

∑
j=0

Xj] =
n−1

∑
j=0

E[Xj] =
n−1

∑
j=0

n/(n − j) = n ⋅
n

∑
i=1

1/i = n ⋅ Hn

Median/Select

Select
• Given numbers .

• Median: number that is in the middle position if in sorted order.

• Select(,): Return the th smallest number in .

• Min() = Select(,), Max()= Select(,), Median = Select(,).

• Assume the numbers are distinct.

n S = {a1, …, an}

S k k S

S S 1 S S n S n/2

Select(S, k)

 Choose a pivot s ∈ S uniformly at random.

 For each element e in S:
 if e < s put e in S’
 if e > s put e in S’’

 if |S’| = k-1 then return s

 if |S’| ≥ k then call Select(S’, k)

 if |S’| < k then call Select(S’’, k - |S’| - 1)

Select: Running time

• Worst case running time:

• If there is at least an fraction of elements both larger and smaller than s:

• Intuition: A fairly large fraction of elements are “well-centered” => random pivot likely to be good.

T(n) = cn + c(n − 1) + c(n − 2) + … + c = Θ(n2)

ε

T(n) = cn + (1 − ε)cn + (1 − ε)2cn + …
= (1 + (1 − ε) + (1 − ε)2 + …)cn
≤ cn/ε

Select(S, k)
 Choose a pivot s ∈ S uniformly at random.

 For each element e in S:
 if e < s put e in S’
 if e > s put e in S’’

 if |S’| = k-1 then return s

 if |S’| ≥ k then call Select(S’, k)

 if |S’| < k then call Select(S’’, k - |S’| - 1)

Select: Analysis
• Central element: ≥ 1/4 of the elements in current S are smaller and ≥ 1/4 are larger.

• If pivot central: size of set shrinks by at least a factor 3/4.

• At least half the elements are central Pr[s is central] = 1/2.

• Phase j: Size of set at most and at least .

• Pivot central current phase ends.

• Expected number of iterations before a central pivot is found = 2.

• = number of steps taken by algorithm. = number of steps in phase .

• Then

•

• Expected running time:

⇒

(3/4) jn (3/4) j+1n

⇒

X Xj j

X = X1 + X2 + ⋯

E[Xj] = 2cn(3/4) j

E[X] = E[∑
j

Xj] = ∑
j

E[Xj] = ∑
j

2cn (3
4)

j

= 2cn∑
j

(3
4)

j

≤ 8cn

S

Quicksort

Quicksort
• Given numbers .

• Assume the numbers are distinct.

n S = {a1, …, an}

Quicksort(S)

 if |S| ≤ 1 return S

 else

 Choose a pivot s ∈ S uniformly at random.

 For each element e in S
 if e < s put e in S’

 if e > s put e in S’’

L = Quicksort(S’)
R = Quicksort(S’’)

return the sorted list L◦s◦R

Quicksort: Analysis
• Worst case: comparisons.

• Best case:

• Enumerate elements such that .

• Indicator random variable for all pairs :

• total number of comparisons:

• Expected number of comparisons:

Ω(n2)

O(n log n)

a1 ≤ a2 ≤ ⋯ ≤ an

i < j

Xij = {1 if ai and aj are compared by the algorithm

0 otherwise

X

X =
n−1

∑
i=1

n

∑
j=i+1

Xij

E[X] = E[
n−1

∑
i=1

n

∑
j=i+1

Xij] =
n−1

∑
i=1

n

∑
j=i+1

E[Xij]

Quicksort: Analysis
• Compute expected number of comparisons.

• Since is an indicator variable: .

• and compared or is the first pivot element chosen from

• Pivot chosen independently uniformly at random

all elements from equally likely to be chosen as first pivot from this set.

• We have .

• Thus

Xij E[Xij] = Pr[Xij = 1]

ai aj ⇔ ai aj Zij = {ai, …, aj}

⇒

Zij

Pr[Xij = 1] = 2/(j − i + 1)

E[X] =
n−1

∑
i=1

n

∑
j=i+1

E[Xij] =
n−1

∑
i=1

n

∑
j=i+1

Pr[Xij = 1] =
n−1

∑
i=1

n

∑
j=i+1

2
j − i + 1

=
n−1

∑
i=1

n−i+1

∑
k=2

2
k

≤
n−1

∑
i=1

n

∑
k=1

2
k

= 2
n−1

∑
i=1

Hn = 2n ⋅ Hn ≤ O(n log n)

