Randomized Algorithms ||

Inge Li Gortz

Randomized algorithms

- Last weeks
-+ Contention resolution
+ Global minimum cut
-+ Expectation of random variables
- Guessing cards
+ Quicksort
- Selection

«» >
<>
>
<>
re%
ss%e

+ Today

- Hash functions and hash tables

Hashing

Dictionaries

Dictionary problem. Maintain a dynamic set of S ¢ U subject to the following operations:
-+ Lookup(x): return true if x € S and false otherwise

- Insert(x): Set S =S u {x}

- Delete(x): Set S = S\ {x}

- Universe size. Typically |U| = 2264 and [S]| << |U|.

Satellite information. Information associated with each element.

- Goal. A compact data structure with fast operations.

Applications. Many! A key component in other data structures and algorithms

Chained Hashing

+ Chained hashing [Dumey 1956].
- n=|[S|.

+ Hash function. Pick some crazy, chaotic, random function h that maps U to {0, ..., m-1}, where
m = O(n).

- Initialise an array A[O, ..., m-1].
- AJi] stores a linked list containing the keys in S whose hash value is i.

Uniform random hash functions

- E.g. h(x) = x mod 11. Not crazy, chaotic, random.
- Suppose |U| = n2: For any hash function h there will be a set S of n elements that all map to the
same position!
=> we end up with a single linked list.

+ Solution: randomization.

- For every element u € U: select h(u) uniformly at random in {0, ..., m-1} independently from
all other choices.

- Claim. The probability that h(u) = h(v) for two elements u # v is 1/m.

* Proof.
- m2 possible choices for the pair of values (h(u),h(v)). All equally likely.
+ Exactly m of these gives a collision.

Chained Hashing with Random Hash Function

- Expected length of the linked list for h(x)?

- Random variable L, = length of linked list for x. L=|{yeS|h(y) =hx)}|

- Indikator random variable:

12{1 it h(x) = h(y) szzly

s) E[L] = Pr[h(y) = h(x)] = ! for x # y.
’ 0 otherwise ’

yes L

- The expected length of the linked list for x:

E[L]= E[ZA} = Y EL] =1+ > % = 1+(n—1)%=@(1).

yes yes yes\{x}

Chained Hashing with Random Hash Function

-+ Constant time and O(n) space for the hash table.

+ But:
- Need O(|U|) space for the hash function.
- Need a lot of random bits to generate the hash function.
- Need a lot of time to generate the hash function.

+ Do we need a truly random hash function?

- When did we use the fact that h was random in our analysis?

Chained Hashing with Random Hash Function

- Expected length of the linked list for h(x)?
- Random variable L, = length of linked list for x. L=|{yeS|h}y) =hx)}|

+ Indikator random variable:

Universal hash functions

= {1 if 7i(x) = h(y) L= Z I, E[1]

0 otherwise

1
Prlh(y) = h(x)] = - for x # y.

- The expected length of the linked list for x:

E[L] = E[Zg} = YE =1+ Y % = 1+(n—1)%=@(1).

yes yeS yeSs\{x}

- Universal hashing [Carter and Wegman 1979].
- Let H be a family of functions mapping U to the set {0,...,m — 1}.

- His universal if for any x, y € U, where x # y, and h chosen uniformly at random in H,

Pr[h(x) = h(y)] < 1/m.

- Require that any & € H can be represented compactly and that we can compute the value h(u)
efficiently forany u € U.

Universal Hashing

- Positional number systems. For integers x and b, the base-b representation of x is x written in base
b.

- Example.
+ (10)10=(1010)2 (1-23+0-22+1-21+0-20)
+ (107)10=(212)7 2-72+1-71 +2-70)

Universal Hashing

- Hash function. Given a prime p and a = (a1az...ar)p, define
h((1%,...%,),) = axy + a%, + ... + a,x, mod p

- Example.
o p=7
ca=(107)10 = (212)7
© X =(214)0 = (424)7
chax)=24+1-2+2-4mod7 = 18 mod7 = 4

+ Universal family.
- H={h,|(aa,...a), € {0,....p — 1}"}
+ Choose random hash function from H ~ choose random a.
- H is universal (analysis next).
+ O(1) time evaluation.
+ O(1) space.
- Fast construction.

Uniform Hashing

Universal Hashing

- Lemma 1. For any prime p, any integer z # 0 mod p, and any two integers a, f:
az=pz modp = a=p modp.

+ Proof.
- Show (a — f) is divisible by p:
caz=pfz modp = (a—pf)z=0 mod p.
By assumption z not divisible by p.
Since p is prime a — f must be divisible by p.
- Thus @ = f mod p as claimed.

. Goal. For random a = (alaz...ar)p, show that if x # y then Pr[h,(x) = h,(y)] < 1/p.

- Recall: x = (x1x;...x,), and y = (yy5..Y,)p:
x#y S (0x...X), # (V1Yy...¥,), = % # y; for some j.

- Lemma 2. Let j be such that x; # y;. Assume the coordinates a; have been chosen for all i # ;. The probability of

choosing a; such that 1,(x) = h,(y) is 1/p.

r r
< h) =h(y) e Z ax; modp = Z ay, modp & afx—y)= Zui(x,- —,;) |mod p
i=1 i=1 i#i

- There is exactly one value 0 < aj < p that satisfies ajz = ¢ mod p. fixed value z # 0 fixed value since
all a fixed for i#j.

=@

- Assume there was two such values a; and a]f.
- Then g;z = ajz mod p.
- Lemma 1 = g; = aj mod p. Since a; < p and g; < p we have ¢; = .

- Probability of choosing ; such that h,(x) = h,(y)is 1/p.

Universal Hashing

- Lemma 2. Let j be such that x; # y;. Assume the coordinates aihave been chosen for all i # j. The

probability of choosing ; such that i,(x) = h,(y) is 1/p.

- Theorem. For random a = (4,4,...4,), if X # y then
Pr[h,(x) = h,(»1 = Up.

+ Proof.
- E: the event that /1,(x) = h,(y).
- F} : the event that the values g for i # j gets the sequence of values b.
- Lemma 2 shows that Pr[E|F,] = 1/p for all b.
+ Thus

1 1 1
Pr[E] =) PH{E | F,] - Pr[F,] =) > Pr{F,]= = > Y -PrFyl = >
b

b b

Dictionaries

- Theorem. We can solve the dictionary problem (without special assumptions) in:
- O(n) space.
- O(1) expected time per operation (lookup, insert, delete).

Universal Hashing

+ Other universal families.
+ For prime p > 0.

h, p(x) = ax mod p
H={h,,|lae(l,.,p—1},b€{0,..,p—1}}.

+ Hash function from k-bit numbers to [-bit numbers.
h,(x) = (ax mod 2¥) > (k- 1)
H = {h, | aisan odd integer in {1,...,2¢ — 1}}

