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Randomized algorithms
• Last weeks


• Contention resolution

• Global minimum cut

• Expectation of random variables


• Guessing cards

• Quicksort

• Selection


• Today

• Hash functions and hash tables
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Hashing



Dictionaries
• Dictionary problem. Maintain a dynamic set of S ⊆ U subject to the following operations:


• Lookup(x): return true if x ∈ S and false otherwise

• Insert(x): Set S = S ⋃ {x}

• Delete(x): Set S = S \ {x}


• Universe size. Typically |U| = 2^64 and |S| << |U|.


• Satellite information. Information associated with each element. 


• Goal. A compact data structure with fast operations.


• Applications. Many! A key component in other data structures and algorithms. 



Chained Hashing
• Chained hashing [Dumey 1956].


• n = |S|.

• Hash function. Pick some crazy, chaotic, random function h that maps U to {0, …, m-1},  where 

m = Θ(n).

• Initialise an array A[0, …, m-1].

• A[i] stores a linked list containing the keys in S whose hash value is i. 
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Uniform random hash functions
• E.g. h(x) = x mod 11. Not crazy, chaotic, random.


• Suppose |U| ≥ n2: For any hash function h there will be a set S of n elements that all map to the 
same position!


=> we end up with a single linked list.


• Solution: randomization. 

• For every element u ∈ U: select h(u) uniformly at random in {0, …, m-1} independently from 

all other choices.


• Claim. The probability that h(u) = h(v) for two elements u ≠ v is 1/m.


• Proof.

• m2 possible choices for the pair of values (h(u),h(v)). All equally likely.

• Exactly m of these gives a collision.



Chained Hashing with Random Hash Function
• Expected length of the linked list for h(x)? 


• Random variable  = length of linked list for x.          


• Indikator random variable: 


• The expected length of the linked list for x:

Lx Lx = |{y ∈ S ∣ h(y) = h(x)} |

E[Lx] = E ∑
y∈S

Iy = 1 + (n − 1) ⋅
1
m

= Θ(1) .= 1 + ∑
y∈S∖{x}

1
m

  for  . E[Iy] = Pr[h(y) = h(x)] =
1
m

x ≠ yIy = {1  if h(x) = h(y)
0 otherwise

= ∑
y∈S

E[Iy]

Lx = ∑
y∈S

Iy



Chained Hashing with Random Hash Function
• Constant time and O(n) space for the hash table.


• But:

• Need O(|U|) space for the hash function.

• Need a lot of random bits to generate the hash function.

• Need a lot of time to generate the hash function. 


• Do we need a truly random hash function?


• When did we use the fact that h was random in our analysis?



Chained Hashing with Random Hash Function
• Expected length of the linked list for h(x)? 


• Random variable  = length of linked list for x.          


• Indikator random variable: 


• The expected length of the linked list for x:

Lx Lx = |{y ∈ S ∣ h(y) = h(x)} |

E[Lx] = E ∑
y∈S

Iy = 1 + (n − 1) ⋅
1
m

= Θ(1) .= 1 + ∑
y∈S∖{x}

1
m

  for  . E[Iy] = Pr[h(y) = h(x)] =
1
m

x ≠ yIy = {1  if h(x) = h(y)
0 otherwise

= ∑
y∈S

E[Iy]

Lx = ∑
y∈S

Iy



Universal hash functions
• Universal hashing [Carter and Wegman 1979].


• Let  be a family of functions mapping  to the set .

•  is universal if for any , where ,  and  chosen uniformly at random in ,





• Require that any  can be represented compactly and that we can compute the value  
efficiently for any 

H U {0,…, m − 1}
H x, y ∈ U x ≠ y h H

Pr[h(x) = h(y)] ≤ 1/m .

h ∈ H h(u)
u ∈ U .



Universal Hashing
• Positional number systems. For integers x and b, the base-b representation of x is x written in base 

b. 


• Example. 

• (10)10 = (1010)2  (1⋅23 + 0⋅22 + 1⋅21 + 0⋅20 )

• (107)10 = (212)7  (2⋅72 + 1⋅71 + 2⋅70)



Universal Hashing
• Hash function. Given a prime p and a = (a1a2…ar)p , define 





• Example. 

• p = 7

• a = (107)10  =  (212)7    


• x = (214)10  =  (424)7

• ha(x) = 2⋅4 + 1⋅2 + 2⋅4 mod 7   =   18 mod 7   =   4


• Universal family. 

• 

• Choose random hash function from H ~ choose random a.

• H is universal (analysis next).

• O(1) time evaluation. 

• O(1) space. 

• Fast construction.

ha((x1x2…xr)p) = a1x1 + a2x2 + … + arxr mod p

H = {ha | (a1a2…ar)p ∈ {0,…, p − 1}r}
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Uniform Hashing
• Lemma 1. For any prime , any integer , and any two integers :


 . 


• Proof.

• Show  is divisible by : 


• . 

• By assumption  not divisible by . 

• Since  is prime  must be divisible by .  


• Thus  as claimed. 

p z ≠ 0 mod p α, β
αz = βz mod p ⇒ α = β mod p

(α − β) p
αz = βz mod p ⇒ (α − β)z = 0 mod p

z p
p α − β p

α = β mod p



Universal Hashing
• Goal. For random , show that if  then . 


• Recall:  and   :


 for some . 


• Lemma 2. Let  be such that . Assume the coordinates  have been chosen for all . The probability of 
choosing  such that  is .


•     


• There is exactly one value 0 ≤ aj < p that satisfies aj z = c mod p.


• Assume there was two such values  and .


• Then  . 


• Lemma 1 . Since  and  we have . 


• Probability of choosing  such that  is .

a = (a1a2…ar)p x ≠ y Pr[ha(x) = ha(y)] ≤ 1/p
x = (x1x2…xr)p y = (y1y2…yr)p

x ≠ y ⇔ (x1x2…xr)p ≠ (y1y2…yr)p ⇒ xj ≠ yj j

j xj ≠ yj ai i ≠ j
aj ha(x) = ha(y) 1/p

ha(x) = ha(y) ⇔
r

∑
i=1

aixi mod p =
r

∑
i=1

aiyi mod p ⇔ aj(xj − yj) = ∑
i≠j

ai(xi − yi) mod p

aj a′ j

aj z = a′ j z mod p

⇒ aj = a′ j mod p aj < p a′ j < p aj = a′ j

aj ha(x) = ha(y) 1/p

fixed value since 
all ai fixed for i≠j.
= c

fixed value z ≠ 0



Universal Hashing
• Lemma 2. Let  be such that . Assume the coordinates ai have been chosen for all .  The 

probability of choosing  such that  is .


• Theorem. For random , if  then 


 


• Proof.

•  :  the event that .


•  : the event that the values  for  gets the sequence of values . 

• Lemma 2 shows that   for all .

• Thus 


  =   = 

j xj ≠ yj i ≠ j
aj ha(x) = ha(y) 1/p

a = (a1a2…ar)p x ≠ y
Pr[ha(x) = ha(y)] = 1/p .

E ha(x) = ha(y)

Fb ai i ≠ j b
Pr[E |Fb] = 1/p b

Pr[E] = ∑
b

Pr[E ∣ Fb] ⋅ Pr[Fb] = ∑
b

1
p

⋅ Pr[Fb] =
1
p ∑

b

⋅ Pr[Fb]
𝟣
𝗉



Dictionaries
• Theorem. We can solve the dictionary problem (without special assumptions) in:


• O(n) space.

• O(1) expected time per operation (lookup, insert, delete). 
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Universal Hashing
• Other universal families.


• For prime p > 0.








• Hash function from -bit numbers to -bit numbers.  





ha,b(x) = ax mod p
H = {ha,b ∣ a ∈ {1,…, p − 1}, b ∈ {0,…, p − 1}} .

k l
ha(x) = (ax mod 2k) ≫ (k − l)

H = {ha ∣ a is an odd integer in {1,…,2k − 1}}


