Randomized Algorithms ||

Inge Li Gortz

Thank you to Kevin Wayne and Philip Bille for inspiration to slides



Randomized algorithms

- Last weeks
- Contention resolution
-+ Global minimum cut
- Expectation of random variables
- Guessing cards
- Quicksort
- Selection

- Today
- Hash functions and hash tables

CLEPL PR G

<o
>%¢ ¢
>5><¢ ¢
EYS




Hashing



Dictionaries

- Dictionary problem. Maintain a dynamic set of S ¢ U subject to the following operations:
- Lookup(x): return true if x € S and false otherwise
- Insert(x): Set S =S u {x}
- Delete(x): Set S = S\ {x}

- Universe size. Typically |U| = 2264 and |S| << |U].

- Satellite information. Information associated with each element.
- Goal. A compact data structure with fast operations.

- Applications. Many! A key component in other data structures and algorithms.



Chained Hashing

+ Chained hashing [Dumey 1956].

- n=|S|.
- Hash function. Pick some crazy, chaotic, random function h that maps U to {0, ..., m-1}, where
m = O(n).

- Initialise an array A[O, ..., m-1].
- AJi] stores a linked list containing the keys in S whose hash value is i.




Uniform random hash functions

- E.g. h(x) = x mod 11. Not crazy, chaotic, random.
- Suppose |U| = n2: For any hash function h there will be a set S of n elements that all map to the
same position!
=> we end up with a single linked list.

- Solution: randomization.

- For every element u € U: select h(u) uniformly at random in {0, ..., m-1} independently from
all other choices.

- Claim. The probability that h(u) = h(v) for two elements u # v is 1/m.

- Proof.

- m2 possible choices for the pair of values (h(u),h(v)). All equally likely.
- Exactly m of these gives a collision.



Chained Hashing with Random Hash Function

- Expected length of the linked list for h(x)?

- Random variable L, = length of linked list for x. L.=|{yeS|hQy) =hx}|

- Indikator random variable:

1 ifh(x)=nh 1
/ { if h(x) = h(y) L = Z I, EIL,] = Pr[h(y) = h(x)] = — for x £y,

Y 0 otherwise res

- The expected length of the linked list for x:

1 1
E[L] = E[Zly} = ZE[Iy] = 1+ Z — = 1+@-1-—=6().

yeS yES yeS\{x}



Chained Hashing with Random Hash Function

- Constant time and O(n) space for the hash table.

- But:
- Need O(|U|) space for the hash function.
- Need a lot of random bits to generate the hash function.
- Need a lot of time to generate the hash function.

- Do we need a truly random hash function?

- When did we use the fact that h was random in our analysis?



Chained Hashing with Random Hash Function

- Expected length of the linked list for h(x)?

- Random variable L, = length of linked list for x. L.=|{yeS|hQy) =hx}|

- Indikator random variable:

/ { if h(x) = h(y) L = Z I, EIL,] =|Pr[h(y) = h(x)] = — for x £y,

y 0 otherwise

yeS

- The expected length of the linked list for x:

1 1
E[L] = E[Zly} = ZE[Iy] = 1+ Z — = 1+@-1-—=6().

yeS yES yeS\{x}



Universal hash functions

- Universal hashing [Carter and Wegman 1979].
- Let H be a family of functions mapping U to the set {0,...,m — 1}.

- H is universal if for any x, y € U, where x # y, and h chosen uniformly at random in H,

Pr[a(x) = h(y)] £ 1/m.

- Require that any i1 € H can be represented compactly and that we can compute the value /(1)
efficiently foranyu € U .



Universal Hashing

- Positional number systems. For integers x and b, the base-b representation of x is x written in base
b.

- Example.
- (10)10=(1010)2 (1-23+0-22+1-27+ 0-20)
- (107)10=(212)7 2-72+1-71 + 2-79)



Universal Hashing

- Hash function. Given a prime p and a = (a1az...ay)p, define

h,((x1%,...x,),) = a;x; + ayx, + ... + a,x, mod p

- Example.
- p=7
- a=(107)10 = (212)7
* X =(214)10 = (424)7
- haX)=2-4+1-2+2-4mod7 = 18mod7 = 4

Y
o < ||
i & &
>

- Universal family. —
- H=1{h,|(aa;...a,), € {0,...,p — 1}"} —ole [l ]

+ Choose random hash function from H ~ choose random a.
- H is universal (analysis next).

- O(1) time evaluation.

- O(1) space.

- Fast construction.




Uniform Hashing

- Lemma 1. For any prime p, any integer z # 0 mod p, and any two integers a,
az=fz modp = a=p modp.

- Proof.
- Show (a — ) is divisible by p:
-az=pz modp = (a—p)z=0 mod p.
- By assumption z not divisible by p.
- Since p is prime a — [ must be divisible by p.
- Thus a = f mod p as claimed.



Universal Hashing

- Goal. For random a = (a,4a,...a,),, show that if x # y then Pr[A (x) = h (y)] < 1/p.
- Recall: x = (Xx,...x,), and y = (¥1),...5,),

X #y e (xx...x,), # (VY,---,), = X; # y, for some .

. Lemma 2. Let j be such that X; * Y;- Assume the coordinates a; have been chosen for all I # j. The probability of

choosing a; such that £,(x) = h,(y) is 1/p.

- h,(x)=h,(y) & Z ax; mod p = Z ay; modp < alx—y)= Z a(x; —y;) |mod p
i=1 i=1 I#]

T

- There is exactly one value 0 < a; < p that satisfies ajz = ¢ mod p. fixed value z # O fixed value since
all a; fixed for i#j.

=C

. Assume there was two such values a; and a]f.

- Then g,z =a;z mod p.

- Lemma 1 = a; = a; mod p. Since q; < p and a; < p we have g; = a.

- Probability of choosing a; such that h,(x) = h,(y) is 1/p.



Universal Hashing

- Lemma 2. Let j be such that x; # y;. Assume the coordinates aihave been chosen for all i # j. The

probability of choosing g, such that h,(x) = h,(y)is 1/p.

- Theorem. For random a = (a,4,...4,),, if x # y then

Prlh (x) = h,(y)] = 1/p.

* Proof.
- E': the event that /1(x) = 1, (y).

- F}, : the event that the values q; for i # j gets the sequence of values b.
- Lemma 2 shows that Pr[E | F,] = 1/p for all b.
» Thus

1 1
Pr[E] = Z Pr(E | F,] - Pt[F,] = 2 . Pr{F,]= = > Z - Pr[F,] =
b b

1
. P



Dictionaries

- Theorem. We can solve the dictionary problem (without special assumptions) in:
- O(n) space.
- O(1) expected time per operation (lookup, insert, delete).




Universal Hashing

- Other universal families.
+ For prime p > 0.

h,,(x) = ax mod p
H={h,,|a€{l,..,p—1},b€{0,..,p—-1}}.

- Hash function from k-bit numbers to [-bit numbers.
h(x) = (ax mod 2) > (k — )
H = {h, | ais an odd integer in {1,...2k—1})



