
Randomized Algorithms II
Inge Li Gørtz

Thank you to Kevin Wayne and Philip Bille for inspiration to slides

Randomized algorithms
• Last weeks

• Contention resolution

• Global minimum cut

• Expectation of random variables

• Guessing cards

• Quicksort

• Selection

• Today

• Hash functions and hash tables

🎲🎲

🂦🂨🂹

T

k
1k
3

k
4

k
5

k

Hashing

Dictionaries
• Dictionary problem. Maintain a dynamic set of S ⊆ U subject to the following operations:

• Lookup(x): return true if x ∈ S and false otherwise

• Insert(x): Set S = S ⋃ {x}

• Delete(x): Set S = S \ {x}

• Universe size. Typically |U| = 2^64 and |S| << |U|.

• Satellite information. Information associated with each element.

• Goal. A compact data structure with fast operations.

• Applications. Many! A key component in other data structures and algorithms.

Chained Hashing
• Chained hashing [Dumey 1956].

• n = |S|.

• Hash function. Pick some crazy, chaotic, random function h that maps U to {0, …, m-1}, where

m = Θ(n).

• Initialise an array A[0, …, m-1].

• A[i] stores a linked list containing the keys in S whose hash value is i.

T

U

(universe of keys)

K

(actual

keys)

k1

k2

k4

k5

k3

k1

k3

k4 k5

k2

Uniform random hash functions
• E.g. h(x) = x mod 11. Not crazy, chaotic, random.

• Suppose |U| ≥ n2: For any hash function h there will be a set S of n elements that all map to the
same position!

=> we end up with a single linked list.

• Solution: randomization.

• For every element u ∈ U: select h(u) uniformly at random in {0, …, m-1} independently from

all other choices.

• Claim. The probability that h(u) = h(v) for two elements u ≠ v is 1/m.

• Proof.

• m2 possible choices for the pair of values (h(u),h(v)). All equally likely.

• Exactly m of these gives a collision.

Chained Hashing with Random Hash Function
• Expected length of the linked list for h(x)?

• Random variable = length of linked list for x.

• Indikator random variable:

• The expected length of the linked list for x:

Lx Lx = |{y ∈ S ∣ h(y) = h(x)} |

E[Lx] = E ∑
y∈S

Iy = 1 + (n − 1) ⋅
1
m

= Θ(1) .= 1 + ∑
y∈S∖{x}

1
m

 for . E[Iy] = Pr[h(y) = h(x)] =
1
m

x ≠ yIy = {1 if h(x) = h(y)
0 otherwise

= ∑
y∈S

E[Iy]

Lx = ∑
y∈S

Iy

Chained Hashing with Random Hash Function
• Constant time and O(n) space for the hash table.

• But:

• Need O(|U|) space for the hash function.

• Need a lot of random bits to generate the hash function.

• Need a lot of time to generate the hash function.

• Do we need a truly random hash function?

• When did we use the fact that h was random in our analysis?

Chained Hashing with Random Hash Function
• Expected length of the linked list for h(x)?

• Random variable = length of linked list for x.

• Indikator random variable:

• The expected length of the linked list for x:

Lx Lx = |{y ∈ S ∣ h(y) = h(x)} |

E[Lx] = E ∑
y∈S

Iy = 1 + (n − 1) ⋅
1
m

= Θ(1) .= 1 + ∑
y∈S∖{x}

1
m

 for . E[Iy] = Pr[h(y) = h(x)] =
1
m

x ≠ yIy = {1 if h(x) = h(y)
0 otherwise

= ∑
y∈S

E[Iy]

Lx = ∑
y∈S

Iy

Universal hash functions
• Universal hashing [Carter and Wegman 1979].

• Let be a family of functions mapping to the set .

• is universal if for any , where , and chosen uniformly at random in ,

• Require that any can be represented compactly and that we can compute the value
efficiently for any

H U {0,…, m − 1}
H x, y ∈ U x ≠ y h H

Pr[h(x) = h(y)] ≤ 1/m .

h ∈ H h(u)
u ∈ U .

Universal Hashing
• Positional number systems. For integers x and b, the base-b representation of x is x written in base

b.

• Example.

• (10)10 = (1010)2 (1⋅23 + 0⋅22 + 1⋅21 + 0⋅20)

• (107)10 = (212)7 (2⋅72 + 1⋅71 + 2⋅70)

Universal Hashing
• Hash function. Given a prime p and a = (a1a2…ar)p , define

• Example.

• p = 7

• a = (107)10 = (212)7

• x = (214)10 = (424)7

• ha(x) = 2⋅4 + 1⋅2 + 2⋅4 mod 7 = 18 mod 7 = 4

• Universal family.

•

• Choose random hash function from H ~ choose random a.

• H is universal (analysis next).

• O(1) time evaluation.

• O(1) space.

• Fast construction.

ha((x1x2…xr)p) = a1x1 + a2x2 + … + arxr mod p

H = {ha | (a1a2…ar)p ∈ {0,…, p − 1}r}

k1

k3

k4 k5

214

Uniform Hashing
• Lemma 1. For any prime , any integer , and any two integers :

 .

• Proof.

• Show is divisible by :

• .

• By assumption not divisible by .

• Since is prime must be divisible by .

• Thus as claimed.

p z ≠ 0 mod p α, β
αz = βz mod p ⇒ α = β mod p

(α − β) p
αz = βz mod p ⇒ (α − β)z = 0 mod p

z p
p α − β p

α = β mod p

Universal Hashing
• Goal. For random , show that if then .

• Recall: and :

 for some .

• Lemma 2. Let be such that . Assume the coordinates have been chosen for all . The probability of
choosing such that is .

•

• There is exactly one value 0 ≤ aj < p that satisfies aj z = c mod p.

• Assume there was two such values and .

• Then .

• Lemma 1 . Since and we have .

• Probability of choosing such that is .

a = (a1a2…ar)p x ≠ y Pr[ha(x) = ha(y)] ≤ 1/p
x = (x1x2…xr)p y = (y1y2…yr)p

x ≠ y ⇔ (x1x2…xr)p ≠ (y1y2…yr)p ⇒ xj ≠ yj j

j xj ≠ yj ai i ≠ j
aj ha(x) = ha(y) 1/p

ha(x) = ha(y) ⇔
r

∑
i=1

aixi mod p =
r

∑
i=1

aiyi mod p ⇔ aj(xj − yj) = ∑
i≠j

ai(xi − yi) mod p

aj a′ j

aj z = a′ j z mod p

⇒ aj = a′ j mod p aj < p a′ j < p aj = a′ j

aj ha(x) = ha(y) 1/p

fixed value since
all ai fixed for i≠j.
= c

fixed value z ≠ 0

Universal Hashing
• Lemma 2. Let be such that . Assume the coordinates ai have been chosen for all . The

probability of choosing such that is .

• Theorem. For random , if then

• Proof.

• : the event that .

• : the event that the values for gets the sequence of values .

• Lemma 2 shows that for all .

• Thus

 = =

j xj ≠ yj i ≠ j
aj ha(x) = ha(y) 1/p

a = (a1a2…ar)p x ≠ y
Pr[ha(x) = ha(y)] = 1/p .

E ha(x) = ha(y)

Fb ai i ≠ j b
Pr[E |Fb] = 1/p b

Pr[E] = ∑
b

Pr[E ∣ Fb] ⋅ Pr[Fb] = ∑
b

1
p

⋅ Pr[Fb] =
1
p ∑

b

⋅ Pr[Fb]
𝟣
𝗉

Dictionaries
• Theorem. We can solve the dictionary problem (without special assumptions) in:

• O(n) space.

• O(1) expected time per operation (lookup, insert, delete).

T

U

(univers of keys)

K

(actual

keys)

k1

k2

k4

k5

k3

k1

k3

k4 k5

k2

Universal Hashing
• Other universal families.

• For prime p > 0.

• Hash function from -bit numbers to -bit numbers.

ha,b(x) = ax mod p
H = {ha,b ∣ a ∈ {1,…, p − 1}, b ∈ {0,…, p − 1}} .

k l
ha(x) = (ax mod 2k) ≫ (k − l)

H = {ha ∣ a is an odd integer in {1,…,2k − 1}}

