Randomized Algorithms II

Inge Li Gørtz

Thank you to Kevin Wayne and Philip Bille for inspiration to slides

Randomized algorithms

- Last weeks
	- Contention resolution
	- Global minimum cut
	- Expectation of random variables
		- Guessing cards
	- Quicksort
	- Selection
- Today
	- Hash functions and hash tables

Hashing

Dictionaries

- Dictionary problem. Maintain a dynamic set of S ⊆ U subject to the following operations:
	- Lookup(x): return true if $x \in S$ and false otherwise
	- Insert(x): Set $S = S \cup \{x\}$
	- Delete(x): Set $S = S \setminus \{x\}$
- Universe size. Typically $|U| = 2^64$ and $|S| << |U|$.
- Satellite information. Information associated with each element.
- Goal. A compact data structure with fast operations.
- Applications. Many! A key component in other data structures and algorithms.

Chained Hashing

- Chained hashing [Dumey 1956].
	- \cdot n = $|S|$.
	- Hash function. Pick some crazy, chaotic, random function h that maps U to $\{0, ..., m-1\}$, where $m = \Theta(n)$.
	- Initialise an array A[0, …, m-1].
	- A[i] stores a linked list containing the keys in S whose hash value is i.

Uniform random hash functions

- \cdot *E.g.* $h(x) = x \mod 11$. Not crazy, chaotic, random.
- Suppose $|U| \ge n^2$: For any hash function h there will be a set S of n elements that all map to the same position!
	- => we end up with a single linked list.
- Solution: randomization.
	- For every element $u \in U$: select h(u) uniformly at random in $\{0, \ldots, m-1\}$ independently from all other choices.
- Claim. The probability that $h(u) = h(v)$ for two elements $u \neq v$ is $1/m$.
- Proof.
	- m² possible choices for the pair of values (h(u), h(v)). All equally likely.
	- Exactly m of these gives a collision.

Chained Hashing with Random Hash Function

• Expected length of the linked list for h(x)?

• Indikator random variable:

• Random variable $L_{\rm x}$ = length of linked list for x. $L_{\rm x}$

$$
L_x = |\{y \in S \mid h(y) = h(x)\}|
$$

1 if $h(x) = h(y)$

$$
I_y = \begin{cases} 1 & \text{if } h(x) = h(y) \\ 0 & \text{otherwise} \end{cases} \qquad \qquad L_x = \sum_{y \in S} I_y \qquad \qquad E[I_y] = \Pr[h(y) = h(x)] = \frac{1}{m} \text{ for } x \neq y.
$$

• The expected length of the linked list for x:

0 otherwise

$$
E[L_x] = E\left[\sum_{y \in S} I_y\right] = \sum_{y \in S} E[I_y] = 1 + \sum_{y \in S \setminus \{x\}} \frac{1}{m} = 1 + (n-1) \cdot \frac{1}{m} = \Theta(1).
$$

Chained Hashing with Random Hash Function

- Constant time and O(n) space for the hash table.
- But:
	- Need O(U) space for the hash function.
	- Need a lot of random bits to generate the hash function.
	- Need a lot of time to generate the hash function.
- Do we need a truly random hash function?
- When did we use the fact that h was random in our analysis?

Chained Hashing with Random Hash Function

• Expected length of the linked list for h(x)?

• Indikator random variable:

• Random variable $L_{\rm x}$ = length of linked list for x. $L_{\rm x}$

$$
L_x = |\{ y \in S \mid h(y) = h(x) \}|
$$

1 if $h(x) = h(y)$ $L_x = \sum$ *Iy*

$$
I_{y} = \begin{cases} 1 & \text{if } h(x) = h(y) \\ 0 & \text{otherwise} \end{cases} \qquad \qquad L_{x} = \sum_{y \in S} I_{y} \qquad \qquad E[I_{y}] = \begin{vmatrix} Pr[h(y) = h(x)] = \frac{1}{m} & \text{for } x \neq y. \end{vmatrix}
$$

• The expected length of the linked list for x:

0 otherwise

$$
E[L_x] = E\left[\sum_{y \in S} I_y\right] = \sum_{y \in S} E[I_y] = 1 + \sum_{y \in S \setminus \{x\}} \frac{1}{m} = 1 + (n-1) \cdot \frac{1}{m} = \Theta(1).
$$

y∈*S*

Universal hash functions

- Universal hashing [Carter and Wegman 1979].
	- \cdot Let H be a family of functions mapping U to the set $\{0, \ldots, m-1\}.$
	- \cdot H is universal if for any $x, y \in U$, where $x \neq y$, and h chosen uniformly at random in H ,

 $Pr[h(x) = h(y)] \le 1/m$.

 \cdot Require that any $h \in H$ can be represented compactly and that we can compute the value $h(u)$ efficiently for any $u\in U$.

- Positional number systems. For integers x and b, the base-b representation of x is x written in base b.
- Example.
	- \cdot (10)₁₀ = (1010)₂ (1⋅2³ + 0⋅2² + 1⋅2¹ + 0⋅2⁰)
	- \cdot (107)₁₀ = (212)₇ (2⋅7² + 1⋅7¹ + 2⋅7⁰)

• Hash function. Given a prime p and $a = (a_1a_2...a_r)_p$, define

$$
h_a((x_1x_2...x_r)_p) = a_1x_1 + a_2x_2 + ... + a_rx_r \mod p
$$

- Example.
	- \cdot p = 7
	- $a = (107)_{10} = (212)_{7}$
	- $x = (214)_{10} = (424)_{7}$
	- $\cdot h_a(x) = 2 \cdot 4 + 1 \cdot 2 + 2 \cdot 4 \mod 7 = 18 \mod 7 = 4$
- Universal family.
	- $\cdot H = \{h_a | (a_1 a_2 ... a_r)_p \in \{0, ..., p 1\}^r\}$
	- \cdot Choose random hash function from H \sim choose random a.
	- H is universal (analysis next).
	- \cdot O(1) time evaluation.
	- \cdot O(1) space.
	- Fast construction.

Uniform Hashing

 \cdot Lemma 1. For any prime p , any integer $z\neq 0 \mod p$, and any two integers α,β :

 $\alpha z = \beta z \mod p \implies \alpha = \beta \mod p.$

- Proof.
	- \cdot Show $(\alpha \beta)$ is divisible by p :
		- $\alpha z = \beta z \mod p \implies (\alpha \beta)z = 0 \mod p.$
		- By assumption z not divisible by p .
		- \cdot Since p is prime $\alpha \beta$ must be divisible by p .
	- Thus $\alpha = \beta \mod p$ as claimed.

 $a = (a_1 a_2 ... a_r)_p$, show that if $x \neq y$ then $Pr[h_a(x) = h_a(y)] \leq 1/p$.

\n- Recall:
$$
x = (x_1x_2...x_r)_p
$$
 and $y = (y_1y_2...y_r)_p$:
\n- $x \neq y \Leftrightarrow (x_1x_2...x_r)_p \neq (y_1y_2...y_r)_p \Rightarrow x_j \neq y_j$ for some j .
\n

 \cdot Lemma 2. Let j be such that $x_j \neq y_j$. Assume the coordinates a_i have been chosen for all $i \neq j.$ The probability of choosing a_j such that $h_a(x) = h_a(y)$ is $1/p$.

$$
h_a(x) = h_a(y) \Leftrightarrow \sum_{i=1}^r a_i x_i \mod p = \sum_{i=1}^r a_i y_i \mod p \Leftrightarrow a_j \begin{cases} x_j - y_j \end{cases} = \sum_{i \neq j} a_i (x_i - y_i) \mod p
$$

There is exactly one value $0 \le a_j < p$ that satisfies $a_j z = c \mod p$.

$$
a_j \begin{cases} x_j - y_j \end{cases} = \sum_{i \neq j} a_i (x_i - y_i) \mod p
$$
 fixed value since

- \cdot Assume there was two such values a_j and a'_j .
	- Then $a_j z = a'_j z \mod p$.
	- Lemma 1 $\Rightarrow a_j = a'_j \mod p$. Since $a_j < p$ and $a'_j < p$ we have $a_j = a'_j$.
- Probability of choosing a_j such that $h_a(x) = h_a(y)$ is $1/p$.

all a_i fixed for $i\neq j$. $= 0$

- \cdot Lemma 2. Let j be such that $x_j \neq y_j$. Assume the coordinates a_i have been chosen for all $i \neq j$. The probability of choosing a_j such that $h_a(x) = h_a(y)$ is $1/p$.
- Theorem. For random $a = (a_1 a_2 ... a_r)_p$, if $x \neq y$ then $Pr[h_a(x) = h_a(y)] = 1/p$.
- Proof.
	- \cdot *E* : the event that $h_a(x) = h_a(y)$.
	- \cdot F_b : the event that the values a_i for $i\neq j$ gets the sequence of values $b.$
	- \cdot Lemma 2 shows that $\Pr[E \,|\, F_b] = 1/p$ for all $b.$
	- Thus

$$
Pr[E] = \sum_{b} Pr[E \mid F_b] \cdot Pr[F_b] = \sum_{b} \frac{1}{p} \cdot Pr[F_b] = \frac{1}{p} \sum_{b} \cdot Pr[F_b] = \frac{1}{p}
$$

Dictionaries

- Theorem. We can solve the dictionary problem (without special assumptions) in:
	- O(n) space.
	- O(1) expected time per operation (lookup, insert, delete).

- Other universal families.
	- \cdot For prime $p > 0$.

$$
h_{a,b}(x) = ax \mod p
$$

$$
H = \{h_{a,b} \mid a \in \{1, ..., p-1\}, b \in \{0, ..., p-1\}\}.
$$

 \cdot Hash function from k -bit numbers to l -bit numbers.

$$
h_a(x) = (ax \mod 2^k) \gg (k-l)
$$

$$
H = \{h_a \mid a \text{ is an odd integer in } \{1, \dots, 2^k - 1\}\}
$$