Weekplan: Analysis of Algorithms

Philip Bille

Inge Li Gørtz

Reading

Introduction to Algorithms, Cormen, Rivest, Leisersons and Stein (CLRS): Chapter 3.

Exercises

1 [w] Asymptotic Growth Arrange the following functions in increasing asymptotic order, i.e., if $f(n)$ precedes $g(n)$ then $f(n)=O(g(n))$.

$$
n \log n \quad n^{2} \quad 2^{n} \quad n^{3} \quad \sqrt{n} \quad n
$$

2Θ-notation Write the following expressions using Θ-notation.

$$
\begin{gathered}
n^{2}+n^{3} / 2 \\
2^{n}+n^{4} \\
\log _{2} n+n \sqrt{n} \\
n(n-6) \\
4 \sqrt{n}
\end{gathered}
$$

$$
\begin{gathered}
8 \log _{2}^{7} n+34 \log _{2} n+\frac{1}{1000} n \\
2^{n} 7+5 \log _{2}^{3} n \\
n\left(n^{2}-18\right) \log _{2} n \\
n \log _{2}^{4} n+n^{2} \\
n^{3} \log _{2} n+\sqrt{n} \log _{2} n
\end{gathered}
$$

3 Loopy Loops Analyze the running time of the following loops as a function of n and express the result in O-notation.

LOOP1(n)
$i=1$
while $i \leq n$ do print " \star "
$i=2 \cdot i$
end while

```
LOOP2(n)
i=1
while i\leqn do
    print "\star"
    i=5\cdoti
end while
```

Loop3(n)
for $i=1$ to n do
$j=1$
while $j \leq n$ do
print " \star "
$j=2 \cdot j$
end while end for

4 Asymptotic Statements Which of the following statements are true?

$$
\begin{gathered}
\frac{1}{20} n^{2}+100 n^{3}=O\left(n^{2}\right) \\
\log _{2} n+n=O(n) \\
2^{\log _{2} n}=O(n) \\
n^{3}(n-1) / 5=\Theta\left(n^{3}\right) \\
\log _{2}^{2} n+n=\Theta(n)
\end{gathered}
$$

$$
\begin{gathered}
\frac{n^{3}}{1000}+n+100=\Omega\left(n^{2}\right) \\
2^{n}+n^{2}=\Omega(n) \\
\log _{4} n+\log _{16} n=\Theta(\log n) \\
n^{1 / 4}+n^{2}=\Theta(n) \\
2^{\log _{4} n}=\Theta(\sqrt{n})
\end{gathered}
$$

5 Doubling Hypothesis Solve the following exercises.
5.1 [w] Algorithm A runs in exactly $7 n^{3}$ time on an input of size n. How much slower does it run if the input size is doubled?
5.2 Algorithm B runs in time respectively 5, 20, 45, 80 and 125 seconds on input of sizes $1000,2000,3000,4000$ and 5000. Give an estimate of the running time of B on a input of size 6000. Express the (estimated) running time of B using O-notation as a function of the input size n.
5.3 Algorithm C runs 3 seconds slower each time the size of the input is doubled. Express the running time of C using O-notation as a function of the input size n.

6 Asymptotic Properties Solve the following exercises.
6.1 Let $f(n)$ and $g(n)$ be asymptotically non-negative. Show that $\max (f(n), g(n))=\Theta(f(n)+g(n))$.
6.2 Explain why the statement "the running time of algorithm A is at least $O\left(n^{2}\right)$ " does not make sense.
6.3 Is $2^{n+1}=O\left(2^{n}\right)$? Is $2^{2 n}=O\left(2^{n}\right)$?
6.4 Show that $\log _{2}(n!)=O(n \log n)$.
6.5 [*] Show that $\log _{2}(n!)=\Omega(n \log n)$. Combine with exercise 6.4 to conclude that $\log _{2}(n!)=\Theta(n \log n)$.

7 Generalized Merge Sort Professor M. Erge suggests the following variant of merge sort called 3-merge sort. 3merge sort works exactly like normal merge sort except one splits the array into 3 parts instead of 2 that are then recursively sorted and merged. Solve the following exercises.
7.1 Show it is possible to merge 3 sorted arrays in linear time.
7.2 Analyze the running time of 3-merge sort.
7.3 [*] Generalize the algorithm and the analysis of 3 -merge sort to k-merge sort for $k>3$. Is k-merge sort an improvement over the standard 2-merge sort?

8 Maximal Subarray Let $A[0 . . n-1]$ be an array of integers (both positive and negative). A maximal subarray of A is a subarrray $A[i . . j]$ such that the sum $A[i]+A[i+1]+\cdots+A[j]$ is maximal among all subarrays of A. Solve the following exercises.
8.1 [w] Give an algorithm that finds a maximal subarray of A in $O\left(n^{3}\right)$ time.
8.2 [\dagger] Give an algorithm that finds a maximal subarray of A in $O\left(n^{2}\right)$ time. Hint: Show it is possible to compute the sum of any subarray in $O(1)$ time.
8.3 [$*^{+} \dagger$] Give a divide and conquer algorithm that finds a maximal subarray of A in $O(n \log n)$ time.
8.4 [**] Give an algorithm that finds a maximal subarray of A in $O(n)$ time.

