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• Weighted graphs. Weight w(e) on each edge e in G. 

• Spanning tree. Subgraph T of G over all vertices that is connected and acyclic. 

• Minimum spanning tree (MST). Spanning tree of minimum total weight.   
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• Weighted graphs. Weight w(e) on each edge e in G. 

• Spanning tree. Subgraph T of G over all vertices that is connected and acyclic. 

• Minimum spanning tree (MST). Spanning tree of minimum total weight.   
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• Weighted graphs. Weight w(e) on each edge e in G. 

• Spanning tree. Subgraph T of G over all vertices that is connected and acyclic. 

• Minimum spanning tree (MST). Spanning tree of minimum total weight.   
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• Weighted graphs. Weight w(e) on each e in G. 

• Spanning tree. Subgraph T of G over all vertices that is connected and acyclic. 

• Minimum spanning tree (MST). Spanning tree of minimum total weight.   
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• Weighted graphs. Weight w(e) on each e in G. 

• Spanning tree. Subgraph T of G over all vertices that is connected and acyclic. 

• Minimum spanning tree (MST). Spanning tree of minimum total weight.   
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• Network design.

• Computer, road, telephone, electrical, circuit, cable tv, hydralic, …


• Approximation algorithms.

• Travelling salesperson problem, steiner trees.


• Other applications.

• Meteorology, cosmology, biomedical analysis, encoding, image analysis, ...

Applications
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• Adjacency matrix and adjacency list.

• Similar for directed graphs.

Representation of Weighted Graphs
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• Assume for simplicity:

• All edge weights are distinct.

• G is connected.


• ⟹ MST exists and is unique. 

Properties of Minimum Spanning Trees



• Def. A cut is a partition of the vertices into two non-empty sets. 

• Def. A cut edge is an edge crossing the cut.

• Cut property. For any cut, the lightest cut edge is in the MST.

• Proof. 


• Assume the lightest cut edge e is not in the MST.

• Replace other cut edge f with e. 

• Produces a new spanning with smaller weight.

Cut Property
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• Cycle property. For any cycle, the heaviest edge is not in the MST. 

• Proof. 


• Assume heaviest edge f in cycle is in MST.

• Replace f with lighter edge e in cycle.  

• Produces a new spanning tree with smaller weight.

Cycle Property 

cycle

f

e



• Cut property. For any cut, the lightest cut edge is in the MST.

• Cycle property. For any cycle, the heaviest edge is not in the MST. 

Properties of Minimum Spanning Trees
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• Grow a tree T from some vertex s.

• In each step, add lightest edge with one endpoint i T.

• Stop when T has n-1 edges.

Prim's Algorithm
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• Grow a tree T from some vertex s.

• In each step, add lightest edge with one endpoint i T.

• Stop when T has n-1 edges.

• Exercise. Show execution of Prim's algorithm from vertex 0 on the following graph.

Prim's Algorithm

0

6

1

2

4

5 7

3

11

7

10

5

8

62

4

16

1

14 18

3

9



• Lemma. Prim's algorithm computes the MST. 

• Proof. 


• Consider cut between T and other vertices.

• We add lightest cut edge to T. 

• Cut property ⟹ edge is in MST ⟹ T is MST after n-1 steps.

Prim's Algorithm

s



• Implementation. How do we implement Prim's algorithm?

• Challenge. Find the lightest cut edge.

Prim's Algorithm

s



• Implementation. Maintain vertices outside T in priority queue.

• Key of vertex v = weight of lightest cut edge (∞ if no cut edge).

• In each step: 


• Find lightest edge = EXTRACT-MIN 

• Update weight of neighbors of new vertex with DECREASE-KEY.

Prim's Algorithm
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• Time. 

• n EXTRACT-MIN 

• n INSERT 

• O(m) DECREASE-KEY 


• Total time with min-heap. O(n log n + n log n + m log n) = O(m log n)

Prim's Algorithm
PRIM(G, s) 

for all vertices v∈V
v.key = ∞
v.π = null
INSERT(P,v)

DECREASE-KEY(P,s,0)
while (P ≠ ∅)

u = EXTRACT-MIN(P)
for all neighbors v of u

if (v ∈ P and w(u,v)<key[v])
DECREASE-KEY(P,v,w(u,v))
v.π = u 



• Priority queues and Prim's algorithm. Complexity of Prim's algorithm depend on 
priority queue. 

• n INSERT

• n EXTRACT-MIN

• O(m) DECREASE-KEY


• Greed. Prim's algorithm is a greedy algorithm. 

• Makes local optimal choices in each step that lead to global optimal solution.

Prim's Algorithm

Priority queue INSERT EXTRACT-MIN DECREASE-KEY Total

array O(1) O(n) O(1) O(n2)

binary heap O(log n) O(log n) O(log n) O(m log n)

Fibonacci heap O(1)† O(log n)† O(1)† O(m + n log n)

† = amortized
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• Consider edges from lightest to heaviest.

• In each step, add edge to T if it does not create a cycle.

• Stop when T has n-1 edges.

Kruskal's Algorithm

5

3

8

11

10

4

6

2

9

1

7

9
12

13
15

16

17



0

7

1

3

2

5

6

4

4

24

23

18
9

7

11

14

21

10

5

6

8
16



• Lemma. Kruskal's algorithm computes the MST.

• Proof. 


• Algorithms considers edges from light to heavy. At edge e = (u,v):

• Case 1. e creates a cycle and is not added to T.


• e must be heaviest edge on cycle. 

• Cycle property ⟹ e is not in MST.


• Case 2. e does not create a cycle and is added to T.

• e must be lightest edge in cut.

• Cut property ⟹ e is in MST.


• ⟹ T is MST when n-1 edges are added.

Kruskal's Algorithm



• Implementation. How do we implement Kruskal's algorithm?

• Challenge. Check if an edge form a cycle.

Kruskal's Algorithm
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• Implementation. Maintain edges in a data structure for dynamic connectivity. 

• In each step:


• Check if an edge creates a cycle = CONNECTED.

• Add new edge = INSERT.

Kruskal's Algorithm
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• Time. 

• Sorting m edges. 

• 1 INIT

• m CONNECTED 

• n INSERT


• Total time. O(m log m  + n + m log n + n log n) = O(m log n).

• Greed. Kruskal's algorithm is also a greedy algorithm. 

Kruskal's Algorithm

KRUSKAL(G) 
Sort edges
INIT(n)
for all edges (u,v) i sorted order

if (!CONNECTED(u,v))
INSERT(u,v)

return all inserted edges 



• What is the best algorithm for computing MSTs?

Minimum Spanning Trees

Year Time Authors

??? O(m log n) Jarnik, Prim, Dijkstra, 
Kruskal, Boruvka, ?

1975 O(m log log n) Yao

1986 O(m log* n) Fredman, Tarjan

1995 O(m)‡ Karger, Klein, Tarjan

2000 O(nɑ(m,n)) Chazelle

2002 optimal Pettie, Ramachandran

‡ = randomized
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