Hashing

- Dictionaries
- Chained Hashing
- Linear Probing
- Hash Functions

Philip Bille

Dictionaries

- Dictionaries. Maintain dynamic set S of elements supporting the following operations. Each element x has a key x.key from a universe U and satellite data x.data.
 - + SEARCH(k): determine if element with key k exists. If so, return it.
 - INSERT(x): add x to S (we assume x is not already in S)
 - DELETE(x): remove x from S.

• U = {0,...,99}

• $key(S) = \{1, 13, 16, 41, 54, 66, 96\}$

Hashing Dictionaries

- Chained Hashing
- Linear Probing
- Hash Functions

Dictionaries

· Applications.

- · Basic data structures for representing a set.
- Used in numerous algorithms and data structures.
- Challenge. How can we solve problem with current techniques?

U key(S)

Dictionaries

• Solution 1: linked-list. Maintain S as a linked list.

head $66 \xrightarrow{\leftarrow} 54 \xrightarrow{\leftarrow} 1 \xrightarrow{\leftarrow} 96 \xrightarrow{\leftarrow} 16 \xrightarrow{\leftarrow} 41 \xrightarrow{\leftarrow} 13$

- SEARCH(k): linear search for key k.
- INSERT(x): insert x in the front of the list.
- DELETE(x): remove x from list.
- Time.
 - SEARCH in O(n) time.
 - INSERT and DELETE in O(1) tine.
- Space.

• O(n).

Dictionaries

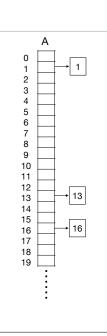
Data structure	SEARCH	INSERT	DELETE	space
linked list	O(n)	O(1)	O(1)	O(n)
direct addressing	O(1)	O(1)	O(1)	O(U)

• Challenge. Can we do significantly better?

Dictionaries

• Solution 2: direct addressing.

- Maintain S in array A of size |U|.
- · Store element x at A[x.key].
- SEARCH(k): return A[x.key].
- INSERT(x): Set A[x.key] = x.
- DELETE(x): Set A[x.key] = null.
- Time.
 - SEARCH, INSERT and DELETE in O(1) time.
- Space.
 - O(|U|)

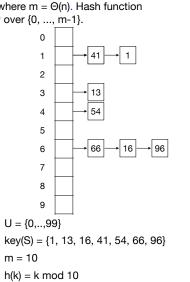


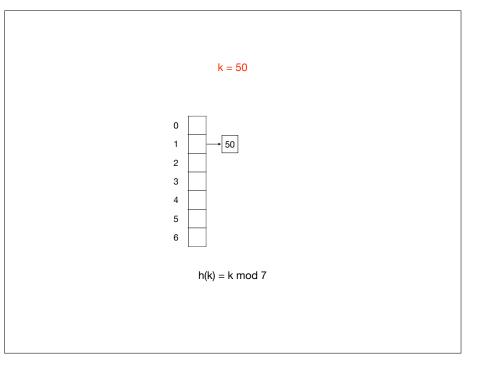
Hashing

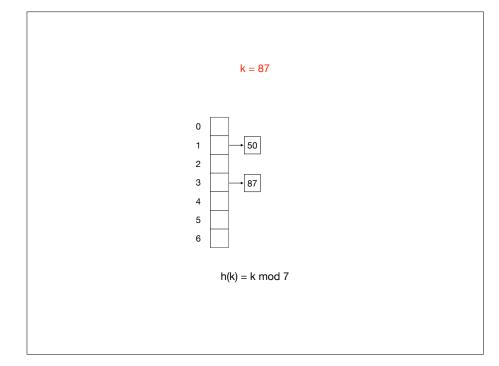
- Dictionaries
- Chained Hashing
- Linear Probing
- Hash Functions

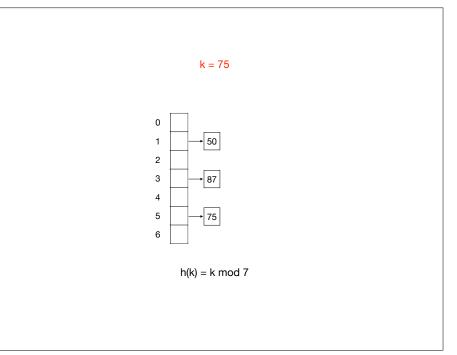
Chained Hashing

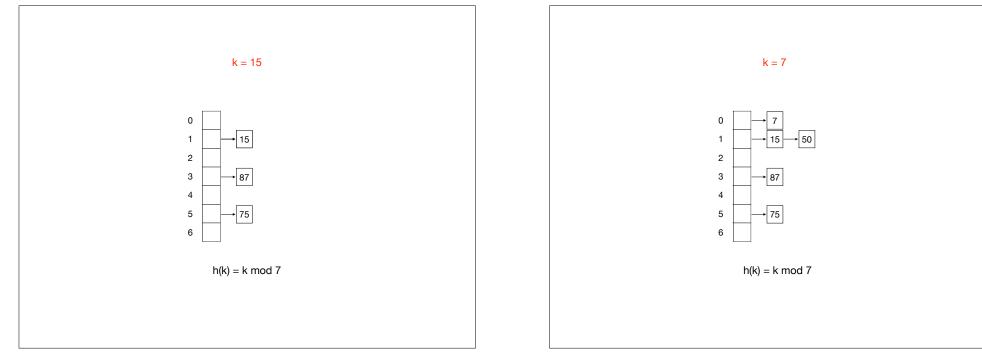
- Idea. Find a hash function h : U → {0, ..., m-1}, where m = Θ(n). Hash function should spread keys from S approximately evenly over {0, ..., m-1}.
- Chained hashing.
 - Maintain array A[0..m-1] of linked lists.
 - Store element x in linked list at A[h(x.key)].
- Collision.
 - x and y collides if h(x.key) = h(y.key).
- SEARCH(k): linear search in A[h(k)] for key k.
- INSERT(x): insert x in front of list A[h(x.key)].
- DELETE(x): remove x from list A[h(x.key)].

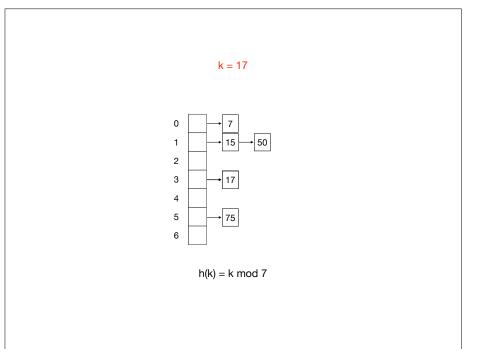


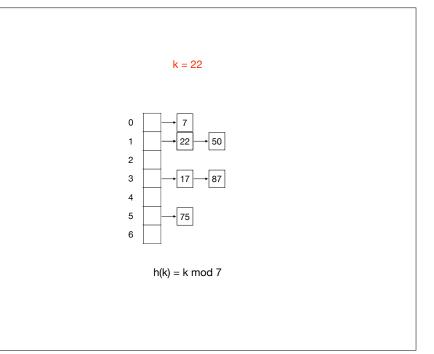






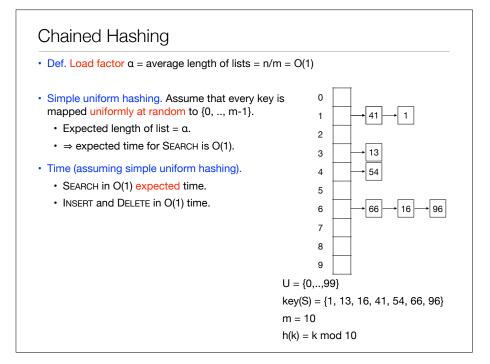


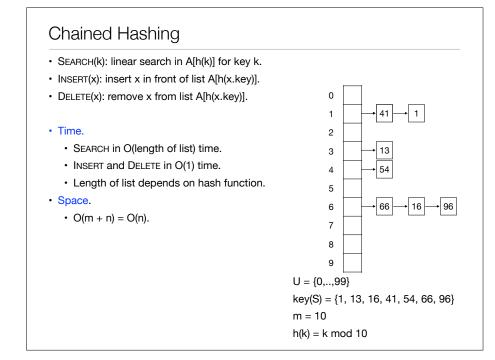




Chained Hashing

- SEARCH(k): linear search in A[h(k)] for key k.
- INSERT(x): insert x in front of list A[h(x.key)].
- DELETE(x): remove x from list A[h(x.key)].
- Exercise. Insert sequence of keys K = 5, 28, 19, 15, 20, 33, 12, 17, 10 in an initially empty hash table of size 9 using chained hashing with hash function h(k) = k mod 9.





Dictior	naries
Diotioi	101100

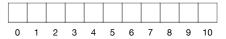
Data structure	SEARCH	INSERT	DELETE	space
linked list	O(n)	O(1)	O(1)	O(n)
direct addressing	O(1)	O(1)	O(1)	O(U)
chained hashing	O(1) [†]	O(1)	O(1)	O(n)

† = expected time assuming simple uniform hashing

Hashing

- Dictionaries
- Chained Hashing
- Linear Probing
- Hash Functions

5 1 27 32 54 11 19

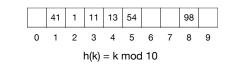


 $h(k) = k \mod 11$

Linear Probing

• Linear probing.

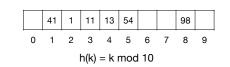
- Maintain S in array A of size m.
- Element x stored in A[h(x.key)] or in cluster to the right of A[h(x.key)].
- Cluster = consecutive (cyclic) sequence of non-empty entries.



- SEARCH(k): linear search from A[k] in cluster to the right of A[k].
- INSERT(x): insert x on A[h(x.key)]. If non-empty, insert on next empty entry to the right of x (cyclically).
- DELETE(x): remove x from A[h(x.key)]. Re-insert all elements to the right of x in the cluster.

Linear Probing

- Theorem. Simple uniform hashing ⇒ expected O(1) time for linear probing operations.
- Caching. Linear probing is cache-efficient.



• Variants.

- Quadratic probing
- Double hashing.

Dictionaries

Data structure	Search	INSERT	DELETE	space
linked list	O(n)	O(1)	O(1)	O(n)
direct addressing	O(1)	O(1)	O(1)	O(U)
chained hashing	O(1)†	O(1)	O(1)	O(n)
linear probing	O(1)†	O(1)†	O(1)†	O(n)

† = expected time assuming simple uniform hashing

Hash Functions

• Simple hash functions.

- h(k) = k mod m. Typically, m is prime.
- $h(k) = \lfloor m(kZ \lfloor kZ \rfloor) \rfloor$, for constant Z, 0 < Z < 1.

• Universal hash functions.

- Choose hash functions randomly from family of hash functions.
- · Designed to have strong guarantees on collision probabilities.
- $\ensuremath{\,\cdot\,}$ \Rightarrow Dictionaries with constant expected time performance.
- Expectation on random choice of hash function. Independent of input set.

• Other hash functions.

• Tabulation hashing, MurmurHash, SHA-xxx, FNV, ...

• Applications.

Cryptography, similarity, coding, ...

Hashing

- Dictionaries
- Chained Hashing
- Linear Probing
- Hash Functions

Hashing

- Dictionaries
- Chained Hashing
- Linear Probing
- Hash Functions