
Philip Bille

Hashing

• Dictionaries

• Chained Hashing

• Linear Probing

• Hash Functions

Hashing

• Dictionaries

• Chained Hashing

• Linear Probing

• Hash Functions

• Dictionaries. Maintain dynamic set S of elements supporting the following
operations. Each element x has a key x.key from a universe U and satellite data
x.data.

• SEARCH(k): determine if element with key k exists. If so, return it.

• INSERT(x): add x to S (we assume x is not already in S)

• DELETE(x): remove x from S.

• U = {0,..,99}

• key(S) = {1, 13, 16, 41, 54, 66, 96}

Dictionaries

key(S)U

• Applications.

• Basic data structures for representing a set.

• Used in numerous algorithms and data structures.

• Challenge. How can we solve problem with current techniques?

Dictionaries

• Solution 1: linked-list. Maintain S as a linked list.

• SEARCH(k): linear search for key k.

• INSERT(x): insert x in the front of the list.

• DELETE(x): remove x from list.

• Time.

• SEARCH in O(n) time.

• INSERT and DELETE in O(1) tine.

• Space.

• O(n).

Dictionaries

66 54 1 96 16 41
head

13

• Solution 2: direct addressing.

• Maintain S in array A of size |U|.

• Store element x at A[x.key].

• SEARCH(k): return A[x.key].

• INSERT(x): Set A[x.key] = x.

• DELETE(x): Set A[x.key] = null.

• Time.

• SEARCH, INSERT and DELETE in O(1) time.

• Space.

• O(|U|)

Dictionaries

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

1

16

13

A

• Challenge. Can we do significantly better?

Dictionaries

Data structure SEARCH INSERT DELETE space

linked list O(n) O(1) O(1) O(n)

direct addressing O(1) O(1) O(1) O(|U|)

Hashing

• Dictionaries

• Chained Hashing

• Linear Probing

• Hash Functions

• Idea. Find a hash function h : U → {0, ... , m-1}, where m = Θ(n). Hash function
should spread keys from S approximately evenly over {0, ..., m-1}.

• Chained hashing.

• Maintain array A[0..m-1] of linked lists.

• Store element x in linked list at A[h(x.key)].

• Collision.

• x and y collides if h(x.key) = h(y.key).

• SEARCH(k): linear search in A[h(k)] for key k.

• INSERT(x): insert x in front of list A[h(x.key)].

• DELETE(x): remove x from list A[h(x.key)].

Chained Hashing

13

0

1

2

3

4

5

6

7

8

9

15 1

54

41

66 16 96

U = {0,..,99}

key(S) = {1, 13, 16, 41, 54, 66, 96}

m = 10

h(k) = k mod 10

0

1

2

3

4

5

6

k = 50

50

h(k) = k mod 7

0

1

2

3

4

5

6

k = 87

50

87

h(k) = k mod 7

0

1

2

3

4

5

6

k = 75

50

87

75

h(k) = k mod 7

0

1

2

3

4

5

6

k = 15

50

87

75

15

h(k) = k mod 7

k = 7

15

0

1

2

3

4

5

6

50

87

75

7

h(k) = k mod 7

k = 17

15

0

1

2

3

4

5

6

50

87

75

17

7

h(k) = k mod 7

17

k = 22

0

1

2

3

4

5

6

15 50

87

75

7

22

h(k) = k mod 7

• SEARCH(k): linear search in A[h(k)] for key k.

• INSERT(x): insert x in front of list A[h(x.key)].

• DELETE(x): remove x from list A[h(x.key)].

• Exercise. Insert sequence of keys K = 5, 28, 19, 15, 20, 33, 12, 17, 10 in an initially
empty hash table of size 9 using chained hashing with hash function h(k) = k mod 9.

Chained Hashing
• SEARCH(k): linear search in A[h(k)] for key k.

• INSERT(x): insert x in front of list A[h(x.key)].

• DELETE(x): remove x from list A[h(x.key)].

• Time.

• SEARCH in O(length of list) time.

• INSERT and DELETE in O(1) time.

• Length of list depends on hash function.

• Space.

• O(m + n) = O(n).

Chained Hashing

13

0

1

2

3

4

5

6

7

8

9

15 1

54

41

66 16 96

U = {0,..,99}

key(S) = {1, 13, 16, 41, 54, 66, 96}

m = 10

h(k) = k mod 10

• Def. Load factor α = average length of lists = n/m = O(1)

• Simple uniform hashing. Assume that every key is
mapped uniformly at random to {0, .., m-1}.

• Expected length of list = α.

• ⇒ expected time for SEARCH is O(1).

• Time (assuming simple uniform hashing).

• SEARCH in O(1) expected time.

• INSERT and DELETE in O(1) time.

Chained Hashing

13

0

1

2

3

4

5

6

7

8

9

15 1

54

41

66 16 96

U = {0,..,99}

key(S) = {1, 13, 16, 41, 54, 66, 96}

m = 10

h(k) = k mod 10

Dictionaries

Data structure SEARCH INSERT DELETE space

linked list O(n) O(1) O(1) O(n)

direct addressing O(1) O(1) O(1) O(|U|)

chained hashing O(1)† O(1) O(1) O(n)

† = expected time assuming simple uniform hashing

Hashing

• Dictionaries

• Chained Hashing

• Linear Probing

• Hash Functions

• Linear probing.

• Maintain S in array A of size m.

• Element x stored in A[h(x.key)] or in cluster to the right of A[h(x.key)].

• Cluster = consecutive (cyclic) sequence of non-empty entries.

• SEARCH(k): linear search from A[k] in cluster to the right of A[k].

• INSERT(x): insert x on A[h(x.key)]. If non-empty, insert on next empty entry to the right

of x (cyclically).

• DELETE(x): remove x from A[h(x.key)]. Re-insert all elements to the right of x in the

cluster.

Linear Probing

41 1 11 13 54 98

0 1 2 3 4 5 6 7 8 9

h(k) = k mod 10

0 1 2 3 4 5 6 7 8 9 10

h(k) = k mod 11

5 1 32 54 11 1927

• Theorem. Simple uniform hashing ⟹ expected O(1) time for linear probing
operations.

• Caching. Linear probing is cache-efficient.

• Variants.

• Quadratic probing

• Double hashing.

Linear Probing

41 1 11 13 54 98

0 1 2 3 4 5 6 7 8 9

h(k) = k mod 10

Dictionaries

Data structure SEARCH INSERT DELETE space

linked list O(n) O(1) O(1) O(n)

direct addressing O(1) O(1) O(1) O(|U|)

chained hashing O(1)† O(1) O(1) O(n)

linear probing O(1)† O(1)† O(1)† O(n)

† = expected time assuming simple uniform hashing

Hashing

• Dictionaries

• Chained Hashing

• Linear Probing

• Hash Functions

• Simple hash functions.

• h(k) = k mod m. Typically, m is prime.

• h(k) =⎣m(kZ -⎣kZ⎦)⎦, for constant Z, 0 < Z < 1.

• Universal hash functions.

• Choose hash functions randomly from family of hash functions.

• Designed to have strong guarantees on collision probabilities.

• ⇒ Dictionaries with constant expected time performance.

• Expectation on random choice of hash function. Independent of input set.

• Other hash functions.

• Tabulation hashing, MurmurHash, SHA-xxx, FNV, ...

• Applications.

• Cryptography, similarity, coding, ...

Hash Functions

Hashing

• Dictionaries

• Chained Hashing

• Linear Probing

• Hash Functions

