Union Find

* Union Find

* Quick Find

* Quick Union

» Weighted Quick Union
» Path Compression

» Dynamic Connectivity

Philip Bille

Union Find

* Union Find

Philip Bille

Union Find

+ Union find. Maintain a dynamic family of sets supporting the following operations:
« INIT(n): construct sets {0}, {1},..., {n-1}

+ UNION(i,j): forms the union of the two sets that contain i and j. If i and j are in the
same set nothing happens.

+ FIND(i): return a representative for the set that contains i.

INIT(9)
{0} {1} {2} {3} {4} {5} {6} {7} {8}

UNION(5,0)
{1,0,6} {8,3,2,7} {4,5) =P {1,0,6,4,5} {8,3,2,7}

Union Find

» Applications.

Dynamic connectivity.

Minimum spanning tree.

Unification in logic and compilers.

Nearest common ancestors in trees.
+ Hoshen-Kopelman algorithm in physics.
+ Games (Hex and Go)

+ lllustration of clever techniques in data structure design.

Quick Find

+ Quick find. Maintain array id[0..n-1] such that id[i] = representative for i.
+ INIT(n): set elements to be their own representative.

+ UNION(i,j): if FIND(i) # FIND(j), update representative for all elements in one of the
sets.

» FIND(i): return representative.

INIT(9)
{0} {1} {2} {3} {4} {5} {6} {7} {8}

01 2 3 4 5 6 7 8
idl [o]1]2]3]a]5][6]7]8]

UNION(5,0)
{1,0,6} {8,3,2,7} {4,5} =P (1,0,6,4,5} {8,3,2,7)}
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
idl [1[1]a[a]s|s[1]a][a] [1]1]a]a[1][1]1]a]3]

Union Find
* Quick Find
Philip Bille
Quick Find
- UNION(Ci, J):
INIngg-k 0t m1 iID = FIND(i)
{dLKT - K FID = FiNo(3)
= if (iID = jID)
FInD(i): for =0 tont
: S if (id[k] == iID)
return id[i] id[k] = jID

UNION(5,0)
{1,0,6} {8,3,2,7} {4,5}) =—» {1,0,6,4,5} {8,3,2,7}

3 4 5 6 7 8

01 2 3 4 5 6 7 8 001 2
idl [1[1[a[a[s]s]1[a[a] [+]1]a]af[1][1]1]3]3

» Time.
+ O(n) time for INIT, O(n) time for UNION, and O(1) tid for FIND.

Union Find

* Quick Union

Quick Union

+ Quick union. Maintain each sets as a rooted tree.

+ Store trees as array p[0..n-1] such that pli] is the parent of i and p[root] = root.
Representative is the root of tree.

+ INIT(n): create n trees with one element each.

+ UNION(,j): if FIND(i) # FIND(j), make the root of one tree the child of the root of the
other tree.

FIND(i): follow path to root and return root.

7 8

(©)
O
O
[o

o=

pl]|o|o|7|2|4|4|0|7|7|

INIT(9)

© 0 66 6 © 6 6 0 O

UNION(3,2)

@@?@@@@@

UNION(3,2)

@@g ®© 6 6 0 O

UNION(2,7)

@@g @@@?

©

UNION(2,7)

@@@%

UNION(5,4)

© O ?@@%

UNION(5,4)

3T

UNION(8,3)

UNION(8,3)

© O ®
®
UNION(1,0)

? © ® @
(® > ®

© O ® Q@
® ® ©
O
UNION(1,0)
"4
® © > ©
@

UNION(B,1)

UNION(6,1)

° §
O () & ©
@
UNION(7,3)
O O
O © () @ ©
©

O @
O © © ONO
O
UNION(5,0)
() Q
O © ©, ONO

UNION(5,0)

UNION(6,2)

UNION(6,2)

Quick Union

+ INIT(n): create n trees with one element each.

+ UNION(i,j): if FIND(i) # FIND(j), make the root of one tree the child of the root of the
other tree.

+ FIND(j): follow path to root and return root.

» Exercise. Show data structure after each operation in the following sequence.

= INIT(7), UNION(O,1), UNION(2,3), UNION(5,1), UNION(5,0), UNION(0,3), UNION(5,2),
UNION(4,3), UNION(4,6).

Quick Union

INITCn):
for k =0 t UNIONCi,) :
pLk] = ri = FIND(i)
FIND(i): rj = FIND(3)
wP:ile G = pD ii‘ (r[i vj rid
i = p[i] pLril =
return f '
o UN|0N50
OB ©
O,
+ Time.

+ O(n) time for INIT, O(d) tid for UNION and FIND, where d is the depth of the tree.

Quick Union

» UNION and FIND depend on the depth of the tree.
» Bad news. Depth can be n-1.
+ Challenge. Can combine trees to limit the depth?

d=n-1—>

Union Find

+ Weighted Quick Union

Weighted Quick Union

» Weighted quick union. Extension of quick union.
» Maintain extra array sz[0..n-1] such sz[i] = the size of the subtree rooted at i.
 INIT: as before + initialize sz[0..n-1].
+ FIND: as before.
+ UNION(i,j): if FIND(i) # FIND(j), make the root of the smaller tree the child of the root

of the larger tree.

sz[rj] = sz[r] + sz[r]

« Intuition. UNION balances the trees.

UNION(i ,J

©

INIT(9)

O 6 66 © 66 6 0 ©

UNION(3,2)

@@@ﬁ)@@@@

©

UNION(3,2)

© i@@@@

©

O

UNION(2,7

)
i\G)@@@

©

©

UNION(2,7)

i\@é)@@

©

©

UNION(5,4)

g\@@ﬁ)@

©

O

UNION(5,4)

S &

UNION(8,3)

@6/2\@:@

UNION(8,3)

@ © I ® ©
O 0 O O

UNION(1,0)

UNION(1,0)

5 B &

T e b
Nodo &

UNION(B,1) UNION(7,3)

UNION(5,1) UNION(5,1)

SN

UNION(6,3)

UNION(6,3)

Weighted Quick Union

UNIONCi, j):
= FIno(i)
rj = FIND(F)
if (ri = ry)
if (sz[ri] < sz[riD)
plril = r;
sz[ri] = sz[ri] + sz[ri]
else
pLril =

sz[ri] = sz[ri] + sz[ri]

AN

UNION(i ,J

Weighted Quick Union

» Lemma. With weighted quick union the depth of a node is at most logz n.
* Proof.

+ Consider node i with depth d..

+ Initially di = 0.

+ diincreases with 1 when the tree is combined with a larger tree.

+ The combined tree is at least twice the size.

+ We can double the size of trees at most logz n times.

- = di<logzn.

©

Union Find

Data structure UNION FIND

quick find O(n) o(1)

quick union O(n) O(n)
weighted quick union O(log n) O(log n)

+ Challenge. Can we do even better?

Union Find

» Path Compression

Path Compression

+ Path compression. Compress path on FIND. Make all nodes on the path children of
the root.

» No change in running time for a single FIND. Subsequent FIND become faster.
» Works with both quick union and weighted quick union.

FIND(9)

Path Compression

Theorem [Tarjan 1975]. With path compression any sequence of m FIND and UNION
operations on n elements take O(n + m a(m,n)) time.

.

a(m,n) is the inverse of Ackermanns function. a(m,n) < 5 for any practical input.

.

Theorem [Fredman-Saks 1985]. It is not possible to support m FIND and UNION
operations O(n + m) time.

FIND(9)
IND @

Union Find

» Dynamic Connectivity

Dynamic Connectivity

+ Dynamic connectivity. Maintain a dynamic graph supporting the following
operations:

+ INIT(n): create a graph G with n vertices and no edges.
» CONNECTED(u,V): determine if u og v are connected.
» INSERT(u, v): add edge (u,v). We assume (u,v) does not already exists.

O—E ©O— O—O——)
INSERT(3,4)
—_—

O—0 ©® © O—0 ©® ©

Dynamic Connectivity

+ Implementation with union find.
« INIT(n): initialize a union find data structure with n elements.
+ CONNECTED(u,V): FIND(u) == FIND(v).
+ INSERT(u, v): UNION(u,V)

INSERT(3,4)
—_—

O—0 ©® © O—0 ©

+ Time
+ O(n) time for INIT, O(log n) time for CONNECTED, and O(log n) time for INSERT

©

Union Find

» Union Find

* Quick Find

* Quick Union

» Weighted Quick Union
» Path Compression

» Dynamic Connectivity

