Weekplan: Analysis of Algorithms
Philip Bille Inge Li Gortz
Reading
Introduction to Algorithms, Cormen, Rivest, Leisersons and Stein (CLRS): Chapter 3.

Exercises

1 [w] Asymptotic Growth Arrange the following functions in increasing asymptotic order, i.e., if f (n) precedes g(n)

then f(n) = 0(g(n)).
nlogn n* 2 n* Vn n

2 O-notation Write the following expressions using ©-notation.

1
n?+n/2 810ggn+34log2n+ 100011
2" +nt 2"7 +5login
log, n+nvn n(n®—18)log, n
n(n—=6)

nlog}n +n
4v/n n*log,n + v/nlog,n

3 LoopyLoops Analyze the running time of the following loops as a function of n and express the result in O-notation.

Loor1(n) Loopr2(n) Loopr3(n)
i=1 i=1 fori=1tondo
while i <n do while i < n do j=1
print "x" print "x" while j <n do
i=2-i i=5-1 print "x"
end while end while j=2-j
end while
end for

4 Asymptotic Statements Which of the following statements are true?

3
+n+100 = Q(n?)

1
—n?+100n% = 0(n?)
20

1000
log,n+n=0(n) 2"+ n? =Q(n)
2log:n — o(n) log, n+1log;qn = O(logn)
n}(n—1)/5=0(n% n'/* +n%=e(n)
log2n+n=0(n) 298" = @(4/n)

5 Doubling Hypothesis Solve the following exercises.

5.1 [w] Algorithm A runs in exactly 7n® time on an input of size n. How much slower does it run if the input size is
doubled?

5.2 Algorithm B runs in time respectively 5,20,45,80 and 125 seconds on input of sizes 1000, 2000, 3000,4000 and
5000. Give an estimate of the running time of B on a input of size 6000. Express the (estimated) running time of
B using O-notation as a function of the input size n.

5.3 Algorithm C runs 3 seconds slower each time the size of the input is doubled. Express the running time of C using
O-notation as a function of the input size n.

6 Asymptotic Properties Solve the following exercises.
6.1 Let f(n) and g(n) be asymptotically non-negative Show that max(f (n), g(n)) = ©(f(n) + g(n)).
6.2 Explain why the statement "the running time of algorithm A is a least O(n?)" does not make sense.
6.3 Is 21 = 0(2M)? Is 22" = O(2")?
6.4 Show that log,(n!) = O(nlogn).
6.5 [x] Show that log,(n!) = Q(nlogn). Combine with exercise 6.4 to conclude that log,(n!) = ©(nlogn).
7 Generalized Merge Sort Professor M. Erge suggests the following variant of merge sort called 3-merge sort. 3-

merge sort works exactly like normal merge sort except one splits the array into 3 parts instead of 2 that are then
recursively sorted and merged. Solve the following exercises.

7.1 Show it is possible to merge 3 sorted arrays in linear time.
7.2 Analyze the running time of 3-merge sort.

7.3 [*] Generalize the algorithm and the analysis of 3-merge sort to k-merge sort for k > 3. Is k-merge sort an
improvement over the standard 2-merge sort?

8 Maximal Subarray Let A[0..n— 1] be an array of integers (both positive and negative). A maximal subarray of A is
a subarrray A[i..j] such that the sum A[i]+A[i+1]+---+A[j] is maximal among all subarrays of A. Solve the following
exercises.

8.1 [w] Give an algorithm that finds a maximal subarray of A in O(n®) time.

8.2 [] Give an algorithm that finds a maximal subarray of A in O(n?) time. Hint: Show it is possible to compute the
sum of any subarray in O(1) time.

8.3 [*7] Give a divide and conquer algorithm that finds a maximal subarray of A in O(nlogn) time.

8.4 [#x] Give an algorithm that finds a maximal subarray of A in O(n) time.

