Shortest Paths

- Shortest Paths
- Properties of Shortest Paths
- Dijkstra’s Algorithm
- Shortest Paths on DAGs

Shortest paths. Given a directed, weighted graph G and vertex s, find shortest path from s to all vertices in G.

Shortest path tree. Represent shortest paths in a tree from s.
Applications

- Routing, scheduling, pipelining, ...

Properties of Shortest Paths

- Assume for simplicity:
 - All vertices are reachable from s.
 - \(\Rightarrow \) a (shortest) path to each vertex always exists.

Shortest Paths

- Shortest Paths
- Properties of Shortest Paths
- Dijkstra’s Algorithm
- Shortest Paths on DAGs

Properties of Shortest Paths

- **Subpath property.** Any subpath of a shortest path is a shortest path.
- **Proof.**
 - Consider shortest path from s to t consisting of \(p_1 \), \(p_2 \) and \(p_3 \).
 - Assume \(q_2 \) is shorter than \(p_2 \).
 - \(\Rightarrow \) Then \(p_1 \), \(q_2 \) and \(p_3 \) is shorter than \(p \).
Shortest Paths

- Shortest Paths
- Properties of Shortest Paths
- Dijkstra’s Algorithm
- Shortest Paths on DAGs

Dijkstra’s Algorithm

Goal. Given a directed, weighted graph with non-negative weights and a vertex \(s \), compute shortest paths from \(s \) to all vertices.

Dijkstra’s algorithm.
- Maintains distance estimate \(v.d \) for each vertex \(v \) = length of shortest known path from \(s \) to \(v \).
- Updates distance estimates by relaxing edges.

Dijkstra’s Algorithm

- Initialize \(s.d = 0 \) and \(v.d = \infty \) for all vertices \(v \in V\{s\} \).
- Grow tree \(T \) from \(s \).
- In each step, add vertex with smallest distance estimate to \(T \).
- Relax all outgoing edges of \(v \).

Relax \((u,v)\)

\[
\text{if } (v.d > u.d + w(u,v)) \\
v.d = u.d + w(u,v)
\]
Dijkstra's Algorithm

- **Lemma.** Dijkstra's algorithms computes shortest paths.
- **Proof.**
 - Consider some step after growing tree T and assume distances in T are correct.
 - Consider closest vertex u of s not in T.
 - Shortest path from s to u ends with an edge (v,u).
 - v is closer than u to s \Rightarrow v is in T. (u was closest not in T)
 - \Rightarrow shortest path to u is in T except last edge (u,v).
 - Dijkstra adds (u,v) to T \Rightarrow T is shortest path tree after $n-1$ steps.

Dijkstra's Algorithm

- **Implementation.** How do we implement Dijkstra's algorithm?
- **Challenge.** Find vertex with smallest distance estimate.
Dijkstra’s Algorithm

Implementation. Maintain vertices outside T in priority queue.

- Key of vertex \(v = v.d \).
- In each step:
 - Find vertex \(u \) with smallest distance estimate = \text{EXTRACT-MIN}
 - Relax edges that \(u \) point to with \text{DECREASE-KEY}.

Dijkstra’s Algorithm

\[
\begin{align*}
\text{Dijkstra}(G, s) \\
\text{for all vertices } v \in V \\
v.d &= \infty \\
v.\pi &= \text{null} \\
\text{INSERT}(P, v) \\
\text{DECREASE-KEY}(P, s, 0) \\
\text{while } (P \neq \emptyset) \\
u &= \text{EXTRACT-MIN}(P) \\
\text{for all } v \text{ that } u \text{ point to} \\
\text{RELAX}(u, v) \\
\text{if } (v.d > u.d + w(u, v)) \\
v.d &= u.d + w(u, v) \\
v.\pi &= u
\end{align*}
\]

Time.
- \(n \) \text{EXTRACT-MIN}
- \(n \) \text{INSERT}
- \(< m \) \text{DECREASE-KEY}
- Total time with min-heap. \(O(n \log n + n \log n + m \log n) = O(m \log n) \)

Dijkstra’s Algorithm

- Priority queues and Dijkstra’s algorithm. Complexity of Dijkstra’s algorithm depend on priority queue.
 - \(n \) \text{INSERT}
 - \(n \) \text{EXTRACT-MIN}
 - \(< m \) \text{DECREASE-KEY}

<table>
<thead>
<tr>
<th>Priority queue</th>
<th>\text{INSERT}</th>
<th>\text{EXTRACT-MIN}</th>
<th>\text{DECREASE-KEY}</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>(O(1))</td>
<td>(O(n))</td>
<td>(O(1))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>binary heap</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O(m \log n))</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>(O(1)^*)</td>
<td>(O(\log n)^*)</td>
<td>(O(1)^*)</td>
<td>(O(m + n \log n))</td>
</tr>
</tbody>
</table>

* = amortized

Greed. Dijkstra’s algorithm is a greedy algorithm.

Edsger W. Dijkstra

- Edsger Wybe Dijkstra (1930-2002)
- Contributions. Foundations for programming, distributed computation, program verifications, etc.
- Quotes. “Object-oriented programming is an exceptionally bad idea which could only have originated in California.”
- “The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence.”
- “APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.”
Shortest Paths on DAGs

- Challenge. Is it computationally easier to find shortest paths on DAGs?
- DAG shortest path algorithm.
 - Process vertices in topological order.
 - For each vertex \(v \), relax all edges from \(v \).
 - Also works for negative edge weights.

- Implementation.
 - Sort vertices in topological order.
 - Relax outgoing edges from each vertex.
 - Total time. \(O(m + n) \).

Lemma. Algorithm computes shortest paths in DAGs.

Proof.
- Consider some step after growing tree \(T \) and assume distances in \(T \) are correct.
- Consider next vertex \(u \) of \(s \) not in \(T \).
- Any path to \(u \) consists vertices in \(T \) + edge \(e \) to \(u \).
- Edge \(e \) is relaxed \(\implies \) distance to \(u \) is shortest.
Shortest Paths Variants

• Vertices
 • Single source.
 • Single source, single target.
 • All-pairs.

• Edge weights.
 • Non-negative.
 • Arbitrary.
 • Euclidian distances.

• Cycles.
 • No cycles
 • No negative cycles.

Shortest Paths

• Shortest Paths
• Properties of Shortest Paths
• Dijkstra’s Algorithm
• Shortest Paths on DAGs