Shortest Paths

• Shortest Paths
• Properties of Shortest Paths
• Dijkstra's Algorithm
• Shortest Paths on DAGs

Philip Bille
Shortest Paths

- Shortest Paths
- Properties of Shortest Paths
- Dijkstra's Algorithm
- Shortest Paths on DAGs
Shortest Paths

- **Shortest paths.** Given a directed, weighted graph G and vertex s, find shortest path from s to all vertices in G.
Shortest Paths

- **Shortest paths.** Given a directed, weighted graph G and vertex s, find shortest path from s to all vertices in G.
- **Shortest path tree.** Represent shortest paths in a tree from s.

![Graph with shortest paths]

- **Graph with shortest paths:**
 - The graph shows the shortest paths from vertex s to all other vertices in G. Each edge is labeled with its weight.
 - The shortest path tree is indicated by the red arrows connecting vertices. For example, the path from s to vertex 2 goes through vertices 1 and 2, with the total weight of 17.
 - The shortest path from s to vertex 0 is the direct edge with weight 0.
Applications

- Routing, scheduling, pipelining, ...
Shortest Paths

- Shortest Paths
- Properties of Shortest Paths
- Dijkstra's Algorithm
- Shortest Paths on DAGs
Properties of Shortest Paths

• Assume for simplicity:
 • All vertices are reachable from s.
 • \implies a (shortest) path to each vertex always exists.
Properties of Shortest Paths

- **Subpath property.** Any subpath of a shortest path is a shortest path.
- **Proof.**
 - Consider shortest path from s to t consisting of p_1, p_2 and p_3.
 - Assume q_2 is shorter than p_2.
 - \implies Then p_1, q_2 and p_3 is shorter than p.
Shortest Paths

• Shortest Paths
• Properties of Shortest Paths
• Dijkstra's Algorithm
• Shortest Paths on DAGs
Dijkstra's Algorithm

- **Goal.** Given a directed, weighted graph with non-negative weights and a vertex s, compute shortest paths from s to all vertices.

- **Dijkstra's algorithm.**
 - Maintains distance estimate $v.d$ for each vertex $v = \text{length of shortest known path from } s \text{ to } v$.
 - Updates distance estimates by relaxing edges.

RELAX(u,v)

$\begin{align*}
\text{if } (v.d > u.d + w(u,v)) \\
v.d &= u.d + w(u,v)
\end{align*}$
Dijkstra's Algorithm

- Initialize s.d = 0 and v.d = ∞ for all vertices v ∈ V\{s}.
- Grow tree T from s.
- In each step, add vertex with \textit{smallest} distance estimate to T.
- Relax all outgoing edges of v.
Dijkstra's Algorithm

- Initialize $s.d = 0$ and $v.d = \infty$ for all vertices $v \in V \setminus \{s\}$.
- Grow tree T from s.
- In each step, add vertex with smallest distance estimate to T.
- Relax all outgoing edges of v.
- **Exercise.** Show execution of Dijkstra's algorithm from vertex 0.

![Graph](image-url)
Dijkstra's Algorithm

- **Lemma.** Dijkstra's algorithms computes shortest paths.
- **Proof.**
 - Consider some step after growing tree T and assume distances in T are correct.
 - Consider closest vertex u of s **not** in T.
 - Shortest path from s to u ends with an edge (v,u).
 - v is closer than u to s \implies v is in T. (u was closest **not** in T)
 - \implies shortest path to u is in T except last edge (u,v).
 - Dijkstra adds (u,v) to T \implies T is shortest path tree after n-1 steps.
Dijkstra's Algorithm

• **Implementation.** How do we implement Dijkstra's algorithm?
• **Challenge.** Find vertex with smallest distance estimate.
Dijkstra's Algorithm

• **Implementation.** Maintain vertices outside T in priority queue.

 • **Key** of vertex v = v.d.

 • In each step:

 • Find vertex u with smallest distance estimate = \text{EXTRACT-MIN}

 • Relax edges that u point to with \text{DECREASE-KEY}.
Dijkstra's Algorithm

\[\text{DIJKSTRA}(G, s) \]
for all vertices \(v \in V \)
\[v.d = \infty \]
\[v.\pi = \text{null} \]
\text{INSERT}(P,v)
\text{DECREASE-KEY}(P,s,0)
while \((P \neq \emptyset) \)
\[u = \text{EXTRACT-MIN}(P) \]
for all \(v \) that \(u \) point to
\text{RELAX}(u,v)

\[\text{RELAX}(u,v) \]
if \((v.d > u.d + w(u,v)) \)
\[v.d = u.d + w(u,v) \]
\text{DECREASE-KEY}(P,v,v.d)
\[v.\pi = u \]

- Time.
 - \(n \) \text{EXTRACT-MIN}
 - \(n \) \text{INSERT}
 - \(< m \) \text{DECREASE-KEY}
- Total time with min-heap. \(O(n \log n + n \log n + m \log n) = O(m \log n) \)
Dijkstra's Algorithm

- Priority queues and Dijkstra's algorithm. Complexity of Dijkstra's algorithm depend on priority queue.
 - n INSERT
 - n EXTRACT-MIN
 - < m DECREASE-KEY

<table>
<thead>
<tr>
<th>Priority queue</th>
<th>INSERT</th>
<th>EXTRACT-MIN</th>
<th>DECREASE-KEY</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(n²)</td>
</tr>
<tr>
<td>binary heap</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(m log n)</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>O(1)†</td>
<td>O(log n)†</td>
<td>O(1)†</td>
<td>O(m + n log n)</td>
</tr>
</tbody>
</table>

† = amortized

- Greed. Dijkstra's algorithm is a greedy algorithm.
Edsger W. Dijkstra

- Edsger Wybe Dijkstra (1930-2002)
- **Dijkstra algorithm.** "A note on two problems in connexion with graphs". Numerische Mathematik 1, 1959.
- **Contributions.** Foundations for programming, distributed computation, program verifications, etc.
- **Quotes.** “Object-oriented programming is an exceptionally bad idea which could only have originated in California.”
 “The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence.”
 “APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.”
Shortest Paths

• Shortest Paths
• Properties of Shortest Paths
• Dijkstra's Algorithm
• Shortest Paths on DAGs
Shortest Paths on DAGs

- **Challenge.** Is it computationally easier to find shortest paths on DAGs?
- **DAG shortest path algorithm.**
 - Process vertices in topological order.
 - For each vertex v, relax all edges from v.
- Also works for **negative** edge weights.
Shortest Paths on DAGs

- **Lemma.** Algorithm computes shortest paths in DAGs.

- **Proof.**
 - Consider some step after growing tree T and assume distances in T are correct.
 - Consider next vertex u of s not in T.
 - Any path to u consists vertices in $T +$ edge e to u.
 - Edge e is relaxed \implies distance to u is shortest.
Shortest Paths on DAGs

- **Implementation.**
 - Sort vertices in topological order.
 - Relax outgoing edges from each vertex.

- **Total time.** $O(m + n)$.

Shortest paths diagram:

- Nodes: 0, 1, 6, 4, 3, 2, 5
- Edges with labels: 6, 4, 15, ∞
Shortest Paths Variants

- **Vertices**
 - Single source.
 - Single source, single target.
 - All-pairs.

- **Edge weights**
 - Non-negative.
 - Arbitrary.
 - Euclidian distances.

- **Cycles**
 - No cycles
 - No negative cycles.
Shortest Paths

• Shortest Paths
• Properties of Shortest Paths
• Dijkstra's Algorithm
• Shortest Paths on DAGs