- Minimum Spanning Trees
- · Representation of Weighted Graphs
- Properties of Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm

Philip Bille

Minimum Spanning Trees

- · Weighted graphs. Weight w(e) on each edge e in G.
- Spanning tree. Subgraph T of G over all vertices that is connected and acyclic.
- · Minimum spanning tree (MST). Spanning tree of minimum total weight.

Minimum Spanning Trees

- Minimum Spanning Trees
- · Representation of Weighted Graphs
- Properties of Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm

Minimum Spanning Trees

- Weighted graphs. Weight w(e) on each edge e in G.
- Spanning tree. Subgraph T of G over all vertices that is connected and acyclic.
- Minimum spanning tree (MST). Spanning tree of minimum total weight.

- · Weighted graphs. Weight w(e) on each edge e in G.
- Spanning tree. Subgraph T of G over all vertices that is connected and acyclic.
- · Minimum spanning tree (MST). Spanning tree of minimum total weight.

Minimum Spanning Trees

- · Weighted graphs. Weight w(e) on each e in G.
- Spanning tree. Subgraph T of G over all vertices that is connected and acyclic.
- Minimum spanning tree (MST). Spanning tree of minimum total weight.

Minimum Spanning Trees

- · Weighted graphs. Weight w(e) on each e in G.
- Spanning tree. Subgraph T of G over all vertices that is connected and acyclic.
- · Minimum spanning tree (MST). Spanning tree of minimum total weight.

Applications

- · Network design.
 - · Computer, road, telephone, electrical, circuit, cable tv, hydralic, ...
- · Approximation algorithms.
 - Travelling salesperson problem, steiner trees.
- · Other applications.
 - · Meteorology, cosmology, biomedical analysis, encoding, image analysis, ...

- · Minimum Spanning Trees
- Representation of Weighted Graphs
- Properties of Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm

Minimum Spanning Trees

- · Minimum Spanning Trees
- Representation of Weighted Graphs
- Properties of Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm

Representation of Weighted Graphs

- · Adjacency matrix and adjacency list.
- Similar for directed graphs.

	0	1	2	3	4	5	6	7
)	0	6	8	2	0	0	0	0
1	6	0	3	0	4	0	0	0
2	8	3	0	4	2	6	0	0
3	2	0	4	0	0	0	7	0
1	0	4	2	0	0	1	0	1
5	0	0	6	0	1	0	2	7
3	0	0	0	7	0	2	0	5
7	0	0	0	0	1	7	5	0

Properties of Minimum Spanning Trees

- Assume for simplicity:
 - · All edge weights are distinct.
 - · G is connected.
- $\boldsymbol{\cdot} \Longrightarrow \mathsf{MST}$ exists and is unique.

Cut Property

- Def. A cut is a partition of the vertices into two non-empty sets.
- Def. A cut edge is an edge crossing the cut.
- Cut property. For any cut, the lightest cut edge is in the MST.
- · Proof.
 - · Assume the lightest cut edge e is not in the MST.
 - · Replace other cut edge f with e.
 - · Produces a new spanning with smaller weight.

Properties of Minimum Spanning Trees

- Cut property. For any cut, the lightest cut edge is in the MST.
- Cycle property. For any cycle, the heaviest edge is not in the MST.

Cycle Property

- Cycle property. For any cycle, the heaviest edge is not in the MST.
- · Proof.
 - Assume heaviest edge f in cycle is in MST.
 - Replace f with lighter edge e in cycle.
 - · Produces a new spanning tree with smaller weight.

Minimum Spanning Trees

- Minimum Spanning Trees
- Representation of Weighted Graphs
- Properties of Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm

Prim's Algorithm

- · Grow a tree T from some vertex s.
- In each step, add lightest edge with one endpoint i T.
- Stop when T has n-1 edges.

Prim's Algorithm

- Grow a tree T from some vertex s.
- In each step, add lightest edge with one endpoint i T.
- Stop when T has n-1 edges.
- Exercise. Show execution of Prim's algorithm from vertex 0 on the following graph.

Prim's Algorithm

- Lemma. Prim's algorithm computes the MST.
- Proof.
 - Consider cut between T and other vertices.
 - We add lightest cut edge to T.
 - Cut property \Longrightarrow edge is in MST \Longrightarrow T is MST after n-1 steps.

Prim's Algorithm

- Implementation. How do we implement Prim's algorithm?
- · Challenge. Find the lightest cut edge.

Prim's Algorithm

```
PRIM(G, s)
for all vertices v∈V

v.key = ∞

v.π = null

INSERT(P,v)

DECREASE-KEY(P,s,0)

while (P ≠ Ø)

u = EXTRACT-MIN(P)
for all neighbors v of u

if (v ∈ P and w(u,v)<key[v])

DECREASE-KEY(P,v,w(u,v))

v.π = u
```

- · Time.
 - n Extract-Min
 - n INSERT
 - O(m) DECREASE-KEY
- Total time with min-heap. $O(n \log n + n \log n + m \log n) = O(m \log n)$

Prim's Algorithm

- Implementation. Maintain vertices outside T in priority queue.
 - Key of vertex v = weight of lightest cut edge (∞ if no cut edge).
 - · In each step:
 - Find lightest edge = EXTRACT-MIN
 - · Update weight of neighbors of new vertex with DECREASE-KEY.

Prim's Algorithm

- Priority queues and Prim's algorithm. Complexity of Prim's algorithm depend on priority queue.
 - n INSERT
 - n Extract-Min
 - O(m) DECREASE-KEY

Priority queue	INSERT	EXTRACT-MIN	DECREASE-KEY	Total
array	O(1)	O(n)	O(1)	O(n²)
binary heap	O(log n)	O(log n)	O(log n)	O(m log n)
Fibonacci heap	O(1)†	O(log n)†	O(1)†	O(m + n log n)

- † = amortized
- · Greed. Prim's algorithm is a greedy algorithm.
 - Makes local optimal choices in each step that lead to global optimal solution.

- Minimum Spanning Trees
- Representation of Weighted Graphs
- Properties of Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm

Kruskal's Algorithm

- · Consider edges from lightest to heaviest.
- In each step, add edge to T if it does not create a cycle.
- Stop when T has n-1 edges.

Kruskal's Algorithm

- Lemma. Kruskal's algorithm computes the MST.
- Proof
- Algorithms considers edges from light to heavy. At edge e = (u,v):
- Case 1. e creates a cycle and is not added to T.
 - e must be heaviest edge on cycle.
 - Cycle property ⇒ e is not in MST.
- Case 2. e does not create a cycle and is added to T.
 - e must be lightest edge in cut.
 - Cut property \Longrightarrow e is in MST.
- ⇒ T is MST when n-1 edges are added.

Kruskal's Algorithm

- Implementation. How do we implement Kruskal's algorithm?
- · Challenge. Check if an edge form a cycle.

Kruskal's Algorithm

Total time. O(m log m + n + m log n + n log n) = O(m log n).
 Greed. Kruskal's algorithm is also a greedy algorithm.

Kruskal's Algorithm

- Implementation. Maintain edges in a data structure for dynamic connectivity.
- In each step:
 - Check if an edge creates a cycle = CONNECTED.
 - Add new edge = INSERT.

Minimum Spanning Trees

• What is the best algorithm for computing MSTs?

Year	Time	Authors
???	O(m log n)	Jarnik, Prim, Dijkstra, Kruskal, Boruvka, ?
1975	O(m log log n)	Yao
1986	O(m log* n)	Fredman, Tarjan
1995	O(m)‡	Karger, Klein, Tarjan
2000	O(na(m,n))	Chazelle
2002	optimal	Pettie, Ramachandran

= randomized

- Minimum Spanning Trees
- Representation of Weighted Graphs
- Properties of Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm