Directed Graphs

- Directed Graphs
- Representation
- Search
- Topological Sorting
- Directed Acyclic Graphs
- Strongly Connected Components
- Implicit Graphs
Directed Graphs

- Directed Graphs
- Representation
- Search
- Topological Sorting
- Directed Acyclic Graphs
- Strongly Connected Components
- Implicit Graphs
Directed Graphs

- **Directed graph.** Set of vertices pairwise joined by **directed** edges.
Road Networks

- Vertex = intersection, edge = (one-way) road.
Garbage Collection

- Vertex = object, edge = pointer/reference.
- Which objects are reachable from a root?
WWW

- Vertex = homepage, edge = hyperlink.
- Web Crawling
- PageRank

http://computationalculture.net/article/what_is_in_pagerank
Automata and Regular Expressions

- Vertex = state, edge = state transition.
- Does the automaton accept "aab" = is there a path from 1 to 10 that matches "aab"?
- Regular expressions can be represented as automata.

\[R = a \cdot (a^*) \cdot (b|c) \]
 Dependencies

- Vertices = topics, edge = dependency.
- Are there any cyclic dependencies? Can we find an ordering of vertices that avoids cyclic dependencies?
Dependencies

- tabeller
- flettesortering
- hægtede lister
- stakke
- køer
- ordbøger
- indsættelsessortering
- hob
- foren og find
- graf
- uorienterede graf
- binær søgning
- binære søgetræer
- MST
- orienterede graf
- BFS/DFS
- topologisk sortering
- korteste veje
- Dijkstra's algoritme
- stærke sammenhængkomponenter
Applications

<table>
<thead>
<tr>
<th>Graph</th>
<th>Vertices</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>internet</td>
<td>homepage</td>
<td>hyperlink</td>
</tr>
<tr>
<td>transport</td>
<td>intersection</td>
<td>one-way road</td>
</tr>
<tr>
<td>scheduling</td>
<td>job</td>
<td>precedence relation</td>
</tr>
<tr>
<td>disease outbreak</td>
<td>person</td>
<td>infects relation</td>
</tr>
<tr>
<td>citation</td>
<td>paper</td>
<td>citation</td>
</tr>
<tr>
<td>object graph</td>
<td>objects</td>
<td>pointers/references</td>
</tr>
<tr>
<td>object hierarchy</td>
<td>class</td>
<td>inheritance</td>
</tr>
<tr>
<td>control-flow</td>
<td>code</td>
<td>jump</td>
</tr>
</tbody>
</table>
Directed Graphs

- **Lemma.** \(\sum_{v \in V} \deg^-(v) = \sum_{v \in V} \deg^+(v) = m. \)

- **Bevis.** Every edge has exactly one start and end vertex.
Algorithmic Problems on Directed Graphs

- **Path.** Is there a path from s to t?
- **Shortest path.** What is the shortest path from s to t.
- **Directed acyclic graph.** Is there a cycle in the graph?
- **Topological sorting.** Can we order the vertices such that all edges are directed in the same direction?
- **Strongly connected component.** Is there a path between all pairs of vertices?
- **Transitive closure.** For which vertices is there a path from v to w?
Directed Graphs

• Directed Graphs
• Representation
• Search
• Topological Sorting
• Directed Acyclic Graphs
• Strongly Connected Components
• Implicit Graphs
Representation

- **G directed graph with** \(n \) **vertices and** \(m \) **edges.**

Representation. We need the following operations on directed graphs.

- **POINTS\(v, u\):** determine if \(v \) points to \(u \).
- **NEIGHBORS\(v\):** return all vertices that \(v \) points to.
- **INSERT\(v, u\):** add edge \((v, u)\) to \(G \) (unless it is already there).
Adjacency Matrix

- Directed graph G with n vertices and m edges.
- Adjacency matrix.
 - 2D $n \times n$ array A.
 - $A[i,j] = 1$ if i points to j, 0 otherwise.
- Space. $O(n^2)$
- Time.
 - POINTSTo in $O(1)$ time.
 - $\text{NEIGHBORS}(v)$ in $O(n)$ time.
 - $\text{INSERT}(v, u)$ in $O(1)$ time.
Adjacency List

- Directed graph G with n vertices and m edges.
- **Adjacency list.**
 - Array $A[0..n-1]$.
 - $A[i]$ is a linked of all nodes that i points to.
- **Space.** $O(n + \sum_{v \in V} \deg^+(v)) = O(n + m)$
- **Time.**
 - `POI`NTS`T`O, ` NEIGHBORS` and `INSERT` in $O(\deg(v))$ time.
Repræsentation

<table>
<thead>
<tr>
<th>Data structure</th>
<th>POINTS TO</th>
<th>NEIGHBORS</th>
<th>INSERT</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>adjacency matrix</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(n^2)</td>
</tr>
<tr>
<td>adjacency list</td>
<td>O(deg^+(v))</td>
<td>O(deg^+(v))</td>
<td>O(deg^+(v))</td>
<td>O(n+m)</td>
</tr>
</tbody>
</table>
Directed Graphs

- Directed Graphs
- Representation
- Search
- Topological Sorting
- Directed Acyclic Graphs
- Strongly Connected Components
- Implicit Graphs
Søgning

- Depth first search from s.
 - Unmark all vertices and visit s.
 - Visit vertex s:
 - Mark v.
 - Visit all unmarked neighbors that v points to recursively.

- Breadth first search from s.
 - Unmark all vertices and initialize queue Q.
 - Mark s and Q.ENQUEUE(s).
 - While Q is not empty:
 - v = Q.DEQUEUE().
 - For each unmarked neighbor u that v points to.
 - Mark u.
 - Q.ENQUEUE(u).
 - Time. $O(n + m)$
Directed Graphs

• Directed Graphs
• Representation
• Search
• Topological Sorting
• Directed Acyclic Graphs
• Strongly Connected Components
• Implicit Graphs
Topological Sorting

- **Topological sorting.** Ordering of vertices \(v_0, v_1, \ldots, v_{n-1} \) from left to right such that all edges are directed to the right.

```
 0 -> 1
 2 -> 3
 4 -> 5
 6 -> 0
```

- **Challenge.** Compute a topological sorting or determine that none exists.
Topological Sorting

- Algorithm.
 - Find v with in-degree 0.
 - Output v and recurse on G - \{v\}.

![Diagram of topological sorting algorithm](image-url)
Topological Sorting

- **Correctness?**
- **Lemma.** G has topological sorting ⇔ G has vertex v with in-degree 0 and G - \{v\} has topological sorting.
• **Challenge.** How do we implement algorithm efficiently on adjacency list representation?
Topological Sorting

- **Solution 1.** Construct reverse graph G^R.
 - Search in adjacency list representation of G^R to find vertex v with in-degree 0.
 - Remove v and edges out of v.
 - Put v leftmost.
 - Repeat.

- **Time per vertex.**
 - Find vertex v with in-degree 0: $O(n)$.
 - Remove edges out of v: $O(\text{deg}^+(v))$

- **Total time.** $O(n^2 + \sum_{v \in V} \text{deg}^+(v)) = O(n^2 + m) = O(n^2)$.
Topological Sorting

- **Solution 2.** Maintain in-degree of every vertex + linked list of all vertices with in-degree 0.
 - Remove v and edges out of v.
 - Put v leftmost.
 - Repeat

- **Initialization.** $O(n + m)$
- **Time per vertex.**
 - Remove vertex v with in-degree 0: $O(1)$.
 - Remove edges out of v: $O(\text{deg}^+(v))$
- **Total time.** $O(n + \sum_{v \in V} \text{deg}^+(v)) = O(n + m) = O(n + m)$.

[Diagram of a graph with labeled vertices and edges, along with a degree table showing the in-degree of each vertex.]
Directed Graphs

- Directed Graphs
- Representation
- Search
- Topological Sorting
- Directed Acyclic Graphs
- Strongly Connected Components
- Implicit Graphs
Directed Acyclic Graphs

• **Directed acyclic graph (DAG).** G is a DAG if it contains no (directed) cycles.

• **Challenge.** Determine whether or not G is a DAG.

• **Equivalence of DAGs and topological sorting.** G is a DAG \iff G has a topological sorting (see exercises).

• **Algorithm.**
 - Compute a topological sorting.
 - If success output yes, otherwise no.

• **Time.** $O(n + m)$
Def. *v and u are strongly connected* if there is a path from *v to u and u to v.*

Def. A *strongly connected component* is a maximal subset of strongly connected vertices.

Theorem. We can compute the strongly connected components in a graph in \(O(n + m)\) time.

See CLRS 22.5.
Directed Graphs

- Directed Graphs
- Representation
- Search
- Topological Sorting
- Directed Acyclic Graphs
- Strongly Connected Components
- Implicit Graphs
Implicit Graphs

- **Implicit graph.** Undirected/directed graph with implicit representation.
- **Implicit representation.**
 - Start vertex s + algorithm to generate neighbors of a vertex.
- **Applications.** Games, AI, etc.
Implicit Graphs

- Rubik's cube
 - $n + m = 43,252,003,274,489,856,000 \approx 43$ trillions.
 - What is the smallest number of moves needed to solve a cube from any starting configuration?

<table>
<thead>
<tr>
<th>year</th>
<th>lower bound</th>
<th>upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>18</td>
<td>52</td>
</tr>
<tr>
<td>1990</td>
<td>18</td>
<td>42</td>
</tr>
<tr>
<td>1992</td>
<td>18</td>
<td>39</td>
</tr>
<tr>
<td>1992</td>
<td>18</td>
<td>37</td>
</tr>
<tr>
<td>1995</td>
<td>18</td>
<td>29</td>
</tr>
<tr>
<td>1995</td>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>2005</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>2006</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td>2007</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>2008</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>2008</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>2008</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>2010</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
Directed Graphs

- Directed Graphs
- Representation
- Search
- Topological Sorting
- Directed Acyclic Graphs
- Strongly Connected Components
- Implicit Graphs