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Dictionaries

+ Dictionaries. Maintain dynamic set S of elements supporting the following
operations. Each element x has a key x.key from a universe U and satellite data
x.data.

+ SEARCH(K): determine if element with key k exists. If so, return it.
+ INSERT(x): add x to S (we assume x is not already in S)
+ DELETE(X): remove x from S.

U= {0,..,99} key(s)
+ key(S) = {1, 13, 16, 41, 54, 66, 96}

Dictionaries

+ Applications.
+ Basic data structures for representing a set.
+ Used in numerous algorithms and data structures.

+ Challenge. How can we solve problem with current techniques?




Dictionaries

+ Solution 1: linked-list. Maintain S as a linked list.

head
o[ fe =1 oo 1]

* SEARCH(K): linear search for key k.
+ INSERT(x): insert X in the front of the list.
» DELETE(x): remove x from list.

+ Time.
* SEARCH in O(n) time.
+ INSERT and DELETE in O(1) tine.

Dictionaries

+ Solution 2: direct addressing.
+ Maintain S in array A of size |U|.
+ Store element x at A[x.key].

+ SEARCH(K): return A[x.keyl].
+ INSERT(X): Set A[x.key] = x.

+ DELETE(x): Set A[x.key] = null.

» Time.

+ SEARCH, INSERT and DELETE in O(1) time.

+ Space.
- O(u)
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+ Space.
+ O(n).
Dictionaries
Data structure SEARCH INSERT DELETE space
linked list O(n) o(1) o) O(n)
direct addressing o(1) o(1) o(1) (o](|V])

+ Challenge. Can we do significantly better?

Hashing

+ Chained Hashing




Chained Hashing

+ Idea. Find a hash function h: U = {0, ..., m-1}, where m = ©(n). Hash function
should spread keys from S approximately evenly over {0, ...,21}.

+ Chained hashing.
» Maintain array A[0..m-1] of linked lists.
- Store element x in linked list at A[h(x.key)].

+ Collision.
» x and y collides if h(x.key) = h(y.key).

* SEARCH(K): linear search in A[h(k)] for key k.
+ INSERT(X): insert x in front of list A[h(x.key)].
+ DELETE(x): remove x from list A[h(x.key)].
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Chained Hashing

* SEARCH(K): linear search in A[h(k)] for key k.
+ INSERT(X): insert x in front of list A[h(x.key)].
» DELETE(x): remove x from list A[h(x.key)].

+ Exercise. Insert sequence of keys K =5, 28, 19, 15, 20, 33, 12, 17, 10 in an initially
empty hash table of size 9 using chained hashing with hash function h(k) = k mod 9.

Chained Hashing

+ SEARCH(K): linear search in A[h(k)] for key k.
+ INSERT(X): insert x in front of list A[h(x.key)].
+ DELETE(x): remove x from list A[h(x.key)].

» Time.
+ SEARCH in O(length of list) time.
+ INSERT and DELETE in O(1) time.

+ Length of list depends on hash function.

+ Space.
+ O(m + n) = O(n).

-

© o N o o A~ W N

U=1{0,.,99)

—{or—{]

]
o

o[ —{1e]—]oe]

key(S) = {1, 13, 16, 41, 54, 66, 96}

m=10
h(k) = k mod 10

Chained Hashing

+ Def. Load factor a = average length of lists = n/m = O(1)

+ Simple uniform hashing. Assume that every key is

mapped uniformly at random to {0, .., m-1}.
+ Expected length of list = a.
+ = expected time for SEARCH is O(1).

+ Time (assuming simple uniform hashing).
» SEARCH in O(1) expected time.
+ INSERT and DELETE in O(1) time.

© O N O O »~ 0N

U=1{0,.99)
key(S) = {1, 13, 16, 41, 54, 66, 96}

o]

—|13
[

—{ee]—{10}—{se]

h(k) = k mod 10

Dictionaries
Data structure SEARCH INSERT DELETE space
linked list O(n) o(1) oQ1) O(n)
direct addressing o) o(1) o(1) o(u)
chained hashing o(1)t 0(1) O(1) O(n)

T = expected time assuming simple uniform hashing




Hashing

+ Linear Probing

Linear Probing

* Linear probing.
+ Maintain S in array A of size m.
+ Element x stored in Alh(x.key)] or in cluster to the right of A[h(x.key)].
+ Cluster = consecutive (cyclic) sequence of non-empty entries.
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h(k) = k mod 10

+ SEARCH(K): linear search from A[K] in cluster to the right of A[K].

+ INSERT(X): insert x on A[h(x.key)]. If non-empty, insert on next empty entry to the right
of x (cyclically).

+ DELETE(x): remove x from A[h(x.key)]. Re-insert all elements to the right of x in the
cluster.

5 1 27 32 54 11 19

h(k) = k mod 11

Linear Probing

« Theorem. Simple uniform hashing = expected O(1) time for linear probing
operations.

+ Caching. Linear probing is cache-efficient.
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+ Variants.

+ Quadratic probing
+ Double hashing.




Dictionaries

Data structure SEARCH INSERT DELETE space
linked list O(n) O(1) o(1) O(n)
direct addressing o(1) o(1) o(1) (o](|V])
chained hashing o)t o(1) o(1) O(n)
linear probing o)t o)t o)t O(n)

T = expected time assuming simple uniform hashing
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* Hash Functions

Hash Functions

+ Simple hash functions.
+ h(k) = k mod m. Typically, m is prime.
* h(k)= LmKkZ - Lkz] )], for constant Z,0 < Z < 1.

+ Universal hash functions.
+ Choose hash functions randomly from family of hash functions.
+ Designed to have strong guarantees on collision probabilities.
» = Dictionaries with constant expected time performance.

» Expectation on random choice of hash function. Independent of input set.

+ Other hash functions.
+ Tabulation hashing, MurmurHash, SHA-xxx, FNV, ...

+ Applications.
+ Cryptography, similarity, coding, ...
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