Analysis of Algorithms

* Analysis of algorithms
* Running time
+ Space
» Asymptotic notation
« O, © og Q-notation.
+ Experimental analysis of algorithms

Philip Bille

Analysis of Algorithms

+ Analysis of algorithms
* Running time
» Space

Analysis of Algorithms

+ Goal. Determine and predict computational resources and correct of algorithms.

+ Ex.
+ Does my route finding algorithm work?
+ How quickly can | answer a query for a route?
+ Can it scale to 10k queries per second?
+ Will it run out of memory with large maps?

+ How many cache-misses does the algorithm generate per query? And how does
this affect performance?

+ Primary focus
« Correctness, running time, space usage.
« Theoretical and experimental analysis.

Running time

» Running time. Number of steps an algorithm performs on an input of size n.
+ Steps.

+ Read/write to memory (x :=y, Alil,i=i+1,..)

+ Arithmetic/boolean operations (+, -, *, /, %, &&, ||, & |, *, ~)

+ Comparisons (<, >, =<, =>, =, #)

+ Program flow (if-then-else, while, for, goto, function call, ..)
+ Terminologi. Running time, time, time complexity.

Running time

« Worst-case running time. Maximal running time over all input of size n.
« Best-case running time. Minimal running time over all input of size n.
« Average-case running time. Average running time over all input of size n.

« Terminologi. Time = worst-case running time (unless otherwise stated).

« Other variants. Amortized, randomized, determinstic, non-deterministic, etc.

Space

» Space. Number of memory cells used by the algorithm
* Memory cells.
+ Variables and pointers/references = 1 memory cells.
+ Array of length k = k memory cells.
» Terminologi. Space, memory, storage, space complexity.

Analysis of Algorithms

» Asymptotic notation
+ O, © og Q-notation.

Asymptotic Notation

» Asymptotic notation.
+ O, © og Q-notation.
+ Notation to bound the asymptotic growth of functions.
» Fundamental tool for talking about time and space of algorithms.

O-notation O-notation

« Def. f(n) = O(g(n)) hvis f(n) < cg(n) for large n. + Ex. f(n) = O(n?) if f(n) < cn2 for large n.

+ 5n2 = 0O(n2)?

» 5n2 < 5n2 for large n.
* 5n2 + 3 =0(n??

+ 5n2 + 3 < 6n2 for large n.
* 5n2 + 3n = O(n?)?
cg(n * 5n2 + 3n < 6n2 for large n.
* 5n2 + 3n2 = O(n?)?

* 5n2 + 3n2 = 8n2 < 8n2 for large n.

f(n) - 5n3 = O(n2)?
+ 5n3 > cn? for all constants c for large n.
A
O-notation O-notation
+ Def. f(n) = O(g(n)) if f(n) < cg(n) for large n. + Notation.
« Def. f(n) = O(g(n)) if exists constants ¢, no > 0, such that for all n = no, f(n) < cg(n). + O(g(n)) is a er set of functions.

» Think of =as e or c.
+ f(n) = O(n?) is ok. O(n?) = f(n) is not!

O-notation

« f(n) = O(g(n)) if f(n) < cg(n) for large n.

+ Exercise.

+ Let f(n) =3n + 2n3- n2and h(n) = 4n2 + log n

* Which are true?

+ f(n) = O(n)

+ f(n) = O(n3)

+ f(n) = O(n%)

* h(n) =

+ h(n)
(t

= =

O(n2 log n)
0O(n2)
O(f(m)

(Q-notation

+ Def. f(n) = Q(g(n)) if f(n) = cg(n) for large n.
+ Def. f(n) = Q(g(n)) if exists constants ¢, no> 0, such that for all n = no, f(n) = cg(n)

©®-notation

+ Def. (n) = ©(g(n)) if f(n) = O(g(n)) and f(n) = Q(g(n))

c2g

Asymptotic Notation

+ f(n) = O(g(n)) if f(n) < cg(n) for large n.
+ f(n) = Q(g(n)) if f(n) = cg(n) for large n.
+ f(n) = ©(g(n)) if f(n) = O(g(n)) and f(n) = Q(g(n)).

+ Exercise. Which are true? (logkn is (log n)k)
* nlogdn=0(n?
+ 20+ 5n7=Q(nd)
* n2(n - 5)/5 =0(n?)
« 41100 = O(n)
+ n3/300 + 15log n = O(nd)
« 2logn = O(n)
* log2n+n+7=0Q(logn)

Asymptotic Notation
+ Basic properties.
« Any polynomial grows proportional to it's leading term.
ag + ain+ an®+ -+ agn? = ©(n?)
«+ All logarithms are asymptotically the same.

og n
log,(n) = —2

= O(log.(n)) for all constants a, b > 0

« All logarithms grows slower than all polynomials.
log(n) = O(n9) foralld >0
« All polynomials grow slower than all exponentials.

n®=0(r") foralld>0and r >1

Typical Running Times

for i =1 ton
< (1) time operation >

for i =1ton
for j=1+ton
< 0(1) time operation >

for i =1ton
for j =1 ton
< 0(1) time operation >

Typical Running Times

T(n/2)+©(1) ifn>1
o(1) ifn=1

2T(n/2 +0(n) ifn>1
o1 ifn=1

Tt = {2T(n/2 +e(1) ifn>1
[S) ifn=1

T(n/2)+©(n) ifn>1
o(1) ifn=1

Analysis of Algorithms

+ Experimental analysis of algorithms

Experimental Analysis

« Challenge. Can we experimentally estimate the theoretical running time?
« Doubling technique.
* Run program and measure time for different input sizes.
+ Examine the time increase when we double the size of the input.
« Ex.
* Input size x 2 and time x 4.

« = Algorithm probably runs in quadratic time.

+ T(n) =cn? n time ratio
. = 2 — 2n2 = 2
T(2n) = c(2n)2 = c22n2 = c4n 5000 0 _

« T@n)/T(n) =4
10000 0,2 -
20000 0,6 3
40000 2,3 3,8
80000 9,4 4
160000 37,8 4

Analysis of Algorithms

+ Analysis of algorithms
* Running time
» Space
+ Asymptotic notation
» O, © og Q-notation.
+ Experimental analysis of algorithms

