Weekplan: Searching and Sorting

The $02105+02326$ DTU Algorithms Team

Reading

Introduction to Algorithms, Cormen, Rivest, Leisersons and Stein (CLRS): Chapter 2.

Exercises

1 Run by Hand and Properties Solve the following exercises.
1.1 CLRS [w] 2.1-1.
1.2 CLRS [w] 2.1-2.
1.3 CLRS 2.2-3.
1.4 CLRS [w] 2.3-1.
1.5 CLRS [BSc] 2.3-4.
1.6 CLRS 2.3-6.

2 Duplicates and Close Neighbours Let $A[0 . . n-1]$ be an array of integers. Solve the following exercises.
2.1 [w] A duplicate in A is a pair of entries i and j such that $A[i]=A[j]$. Give an algorithm that determines if there is a duplicate in A in $\Theta\left(n^{2}\right)$ time.
2.2 Give an algorithm that determines if there is a duplicate in A in $\Theta(n \log n)$ time. Hint: use merge sort.
2.3 A closest pair in A is a pair of entries i and j such that $|A[i]-A[j]|$ is minimal among all the pairs of entries. Give an algorithm that finds a closest pair in A in $\Theta(n \log n)$ time.

3 [BEng \dagger] Implementation of Binary Search Implement the binary search algorithm.

4 Implementation and Correctness of Merge Sort Solve the following exercises.
4.1 [\dagger] Implement the merge algorithm.
4.2 [\dagger] Implement the merge sort algorithm.
4.3 [BSc] Show that merge sort sorts all tables correctly. Hint: use induction.

5 2Sum and 3Sum Let $A[0 . . n-1]$ be an array of integers (positive and negative). The array A has a 2 -sum if there exist two entries i and j such that $A[i]+A[j]=0$. Similarly, A has a 3 -sum if there exists three entries i, j and k such that $A[i]+A[j]+A[k]=0$. Solve the following exercises.
5.1 [w] Give an algorithm that determines if A has a 2-sum in $\Theta\left(n^{2}\right)$ time.
5.2 Give an algorithm that determines if A has a 2-sum in $\Theta(n \log n)$ time. Hint: use binary search.
5.3 [w] Give an algorithm that determines if A has a 3-sum in $\Theta\left(n^{3}\right)$ time.
5.4 Give an algorithm that determines if A has a 3 -sum in $\Theta\left(n^{2} \log n\right)$ time. Hint: use binary search.
5.5 [**] Give an algorithm that determines if A has a 3-sum in $\Theta\left(n^{2}\right)$ time.

6 Selection, Partition, and Quick Sort Let $A[0 . . n-1]$ be an array of distinct integers. The integer with rank k in A is the k th smallest integer among the integers in A. The median of A is the integer in A with rank $\lfloor(n-1) / 2\rfloor$. Solve the following exercises.
6.1 Give an algorithm that given a k finds the integer with $\operatorname{rank} k$ in A in $\Theta(n \log n)$ time.

A partition of A is a separation of A into two arrays $A_{\text {low }}$ and $A_{\text {high }}$ such that $A_{\text {low }}$ contains all integers from A that are smaller than or equal to the median of A and $A_{\text {high }}$ contains all the integers from A that are larger than the median of A. Assume in the following that you are given a linear time algorithm to determine the median of an array.
6.2 Give an algorithm to compute a partition of A in $\Theta(n)$ time.
6.3 [*] Give an algorithm to sort A in $\Theta(n \log n)$ time using recursive partition.
$6.4[* *]$ Give an algorithm that given a k finds the integer with rank k in A in $\Theta(n)$ time.

