Introduction

• Algorithms and Data Structures
• Peaks
 • Algorithm 1
 • Algorithm 2
 • Algorithm 3

Philip Bille
Introduction

• Algorithms and Data Structures
 • Peaks
 • Algorithm 1
 • Algorithm 2
 • Algorithm 3
Algorithms and Data Structures

• **Algorithmic problem.** Precisely defined relation between input and output.

• **Algorithm.** Method to solve an algorithmic problem.
 - **Discrete and unambiguous** steps.
 - Mathematical abstraction of a program.

• **Data structure.** Method for organizing data to enable queries and updates.
Example: Find max

- **Find max.** Given a array \(A[0..n-1] \), find an index \(i \), such that \(A[i] \) is maximal.
 - **Input.** Array \(A[0..n-1] \).
 - **Output.** An index \(i \) such that \(A[i] \geq A[j] \) for all indices \(j \neq i \).

- **Algorithm.**
 - Process \(A \) from left-to-right and maintain value and index of maximal value seen so far.
 - Return index.

```
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14
  1  3  7 15 17 11  2  3  6  8  7  5  9  5  23
```
Description of Algorithms

- Natural language.
 - Process A from left-to-right and maintain value and index of maximal value seen so far.
 - Return index.

- Program.

- Pseudocode.

```java
class Algorithm {
    public static int findMax(int[] A) {
        int max = 0;
        for (int i = 0; i < A.length; i++) {
            if (A[i] > A[max]) {
                max = i;
            }
        }
        return max;
    }
}
```

```
FUNCTION FINDMAX(A, n)
    max = 0
    FOR i = 0 TO n-1
            max = i
        END IF
    END FOR
    RETURN max
```

Introduction

• Algorithms and Data Structures
• Peaks
 • Algorithm 1
 • Algorithm 2
 • Algorithm 3
Peaks

• **Peak.** \(A[i] \) is a peak if \(A[i] \) is as least as large as it's neighbors:
 - \(A[i] \) is a peak if \(A[i-1] \leq A[i] \geq A[i+1] \) for \(i \in \{1, ..., n-2\} \)
 - \(A[0] \) is a peak if \(A[0] \geq A[1] \).

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>15</td>
<td>17</td>
<td>11</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>9</td>
<td>5</td>
<td>23</td>
</tr>
</tbody>
</table>

• **Peak finding.** Given a array \(A[0..n-1] \), find an index \(i \) such that \(A[i] \) is a peak.
 - **Input.** A array \(A[0..n-1] \).
 - **Output.** An index \(i \) such that \(A[i] \) is a peak.
Introduction

• Algorithms and Data Structures
• Peaks
 • Algorithm 1
 • Algorithm 2
 • Algorithm 3
Algorithm 1

- **Algorithm 1.** For each entry check if it is a peak. Return the index of the first peak.

```
PEAK1(A, n)
  for i = 1 to n-2
```

- **Pseudocode.**

- **Challenge.** How do we analyze the algorithm?
Theoretical Analysis

• **Running time/time complexity.**
 - $T(n) =$ number of steps that the algorithm performs on input of size n.

• **Steps.**
 - Read/write to memory ($x := y, A[i], i = i + 1, ...$)
 - Arithmetic/boolean operations ($+,-,*,/,\%,&&,||,&,|,\^,\sim$)
 - Comparisons ($<,>,\leq,\geq,=,\neq$)
 - Program flow (if-then-else, while, for, goto, function call, ..)

• **Worst-case time complexity.** Maximal running time over all inputs of size n.
Theoretical Analysis

- **Running time.** What is the running time \(T(n) \) for algorithm 1?

```plaintext
PEAK1(A, n)
    for i = 1 to n-2
```

\[
T(n) = c_1 + (n-2)c_2 + c_3
\]

- \(T(n) \) is a linear function of \(n \): \(T(n) = an + b \)
- **Asymptotic notation.** \(T(n) = \Theta(n) \)
- **Experimental analysis.**
 - What is the experimental running time of algorithm 1?
 - How does the experimental analysis compare to the theoretical analysis?
Peaks

- Algorithm 1 finds a peak in $\Theta(n)$ time.
- Theoretical and experimental analysis agrees.
- **Challenge.** Can we do better?
Introduction

• Algorithms and Data Structures
• Peaks
 • Algorithm 1
 • Algorithm 2
 • Algorithm 3
Algorithm 2

- **Observation.** A maximal entry \(A[i] \) is a peak.
- **Algorithm 2.** Find a maximal entry in \(A \) with \(\text{FINDMAX}(A, n) \).

```plaintext
FINDMAX(A, n)
    max = 0
    for i = 0 to n-1
        if (A[i] > A[max]) max = i
    return max
```

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>7</td>
<td>15</td>
<td>17</td>
<td>11</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>9</td>
<td>5</td>
<td>23</td>
</tr>
</tbody>
</table>
Theoretical Analysis

• **Running time.** What is the running time $T(n)$ for algorithm 2?

```plaintext
FINDMAX(A, n)
    max = 0
    for i = 0 to n-1
        if (A[i] > A[max]) max = i
    return max
```

$$T(n) = c_4 + n \cdot c_5 + c_6 = \Theta(n)$$

• **Experimental analysis.** Better constants?
Peaks

• Theoretical analysis.
 • Algorithm 1 and 2 find a peak in $\Theta(n)$ time.

• Experimental analysis.
 • Algorithm 1 and 2 run in $\Theta(n)$ time in practice.
 • Algorithm 2 is a constant factor faster than algorithm 1.

• Challenge. Can we do significantly better?
Introduction

- Algorithms and Data Structures
- Peaks
 - Algorithm 1
 - Algorithm 2
 - Algorithm 3
Algorithm 3

• **Clever idea.**
 - Where can a peak be relative to $A[i]$?
 - Neighbor are $\leq A[i] \implies A[i]$ is a peak.
 - Otherwise A is increasing in at least one direction \implies peak must exist in that direction.

```
3 10 7
```

```
12 10 7
```

```
3 10 15
```

```
12 10 15
```

• **Challenge.** How can we turn this into a fast algorithm?
Algorithm 3

- Consider the middle entry $A[m]$ and neighbors $A[m-1]$ and $A[m+1]$.
- If $A[m]$ is a peak, return m.
- Otherwise, continue search recursively in half with the increasing neighbor.
Algorithm 3

• Algorithm 3.
 • Consider the middle entry $A[m]$ and neighbors $A[m-1]$ and $A[m+1]$.
 • If $A[m]$ is a peak, return m.
 • Otherwise, continue search recursively in half with the increasing neighbor.

```plaintext
PEAK3(A,i,j)
  m = ⌊(i+j)/2⌋
  if $A[m] \geq$ neighbors return m
  elseif $A[m-1] > A[m]$
    return PEAK3(A,i,m-1)
  elseif $A[m] < A[m+1]$
    return PEAK3(A,m+1,j)
```
Running time.
A recursive call takes constant time.
How many recursive calls?
A recursive call halves size of interval. We stop when array has size 1.

1\text{st} recursive call: n/2
2\text{nd} recursive call: n/4
....
k\text{th} recursive call: n/2^k
....

\implies After \sim\log_2 n recursive call array has size \leq 1.

\implies Running time is \Theta(\log n)

Experimental analysis. Significantly better?
Peaks

• Theoretical analysis.
 • Algorithm 1 and 2 finds a peak in $\Theta(n)$ time.
 • Algorithm 3 finds a peak in $\Theta(\log n)$ time.

• Experimental analysis.
 • Algorithm 1 and 2 run in $\Theta(n)$ time in practice.
 • Algorithm 2 is a constant factor faster than algorithm 1.
 • Algorithm 3 is much, much faster than algorithm 1 and 3.
Introduction

• Algorithms and Data Structures
• Peaks
 • Algorithm 1
 • Algorithm 2
 • Algorithm 3