
Shortest Paths

- Shortest Paths
- · Properties of Shortest Paths
- Dijkstra's Algorithm
- Shortest Paths on DAGs

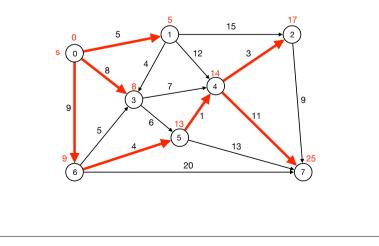
Philip Bille

Shortest Paths

• Shortest paths. Given a directed, weighted graph G and vertex s, find shortest path from s to all vertices in G.

Shortest Paths

Shortest Paths


Properties of Shortest Paths

Shortest Paths

Dijkstra's Algorithm

Shortest Paths on DAGs

- Shortest paths. Given a directed, weighted graph G and vertex s, find shortest path from s to all vertices in G.
- Shortest path tree. Represent shortest paths in a tree from s.

Applications

• Routing, scheduling, pipelining, ...

Properties of Shortest Paths

- Assume for simplicity:
 - All vertices are reachable from s.

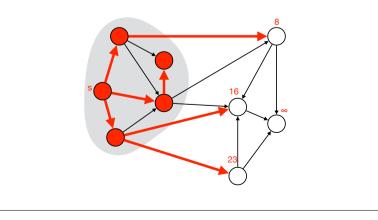
Shortest Paths

- Shortest Paths
- Properties of Shortest Paths
- Dijkstra's Algorithm
- Shortest Paths on DAGs

Properties of Shortest Paths

- Subpath property. Any subpath of a shortest path is a shortest path.
- Proof.
 - Consider shortest path from s to t consisting of p_1 , p_2 and p_3 .

p₃ (v)

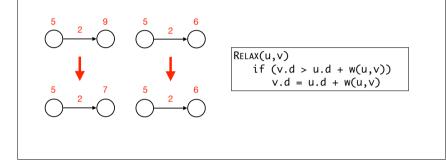

- Assume q₂ is shorter than p₂.
- \implies Then p_1 , q_2 and p_3 is shorter than p.

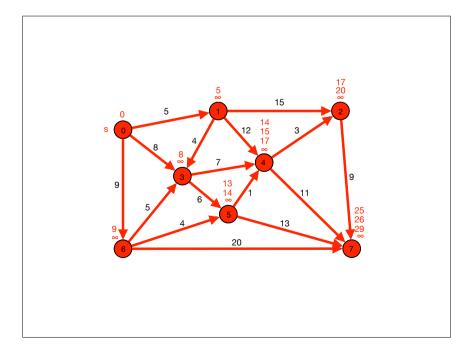
Shortest Paths

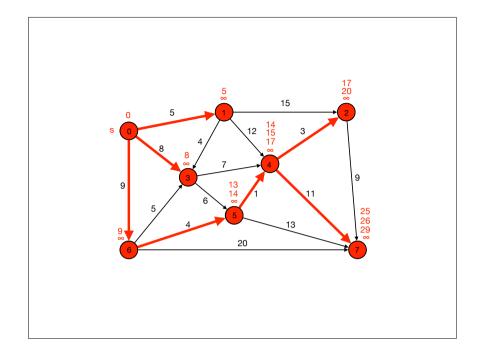
- Shortest Paths
- Properties of Shortest Paths
- Dijkstra's Algorithm
- Shortest Paths on DAGs

Dijkstra's Algorithm

- Initialize s.d = 0 and v.d = ∞ for all vertices $v \in V \setminus \{s\}$.
- Grow tree T from s.
- In each step, add vertex with smallest distance estimate to T.
- Relax all outgoing edges of v.

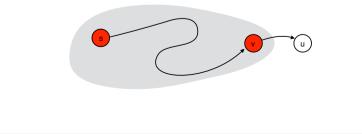


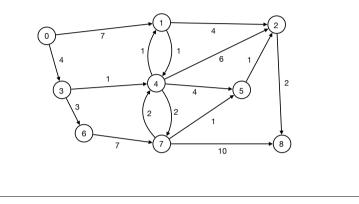

Dijkstra's Algorithm


• Goal. Given a directed, weighted graph with non-negative weights and a vertex s, compute shortest paths from s to all vertices.

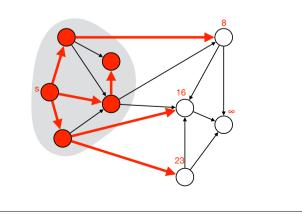
• Dijkstra's algorithm.

- Maintains distance estimate v.d for each vertex v = length of shortest known path from s to v.
- Updates distance estimates by relaxing edges.

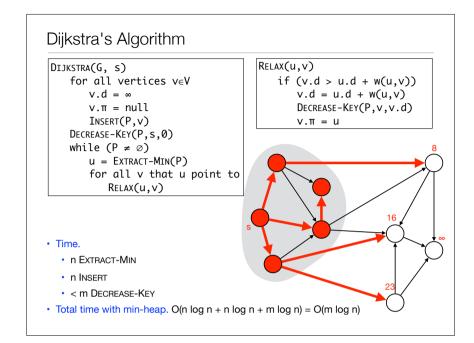



Dijkstra's Algorithm

- Lemma. Dijkstra's algorithms computes shortest paths.
- Proof.
 - Consider some step after growing tree T and assume distances in T are correct.
 - Consider closest vertex u of s not in T.
 - Shortest path from s to u ends with an edge (v,u).
 - v is closer than u to s \implies v is in T. (u was closest not in T)
 - \implies shortest path to u is in T except last edge (u,v).
 - Dijkstra adds (u,v) to $T \Longrightarrow T$ is shortest path tree after n-1 steps.


Dijkstra's Algorithm

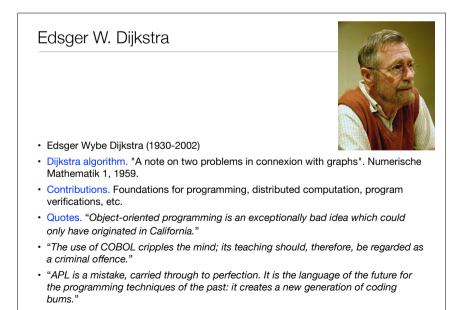
- Initialize s.d = 0 and v.d = ∞ for all vertices $v \in V \setminus \{s\}$.
- Grow tree T from s.
- In each step, add vertex with smallest distance estimate to T.
- Relax all outgoing edges of v.
- Exercise. Show execution of Dijkstra's algorithm from vertex 0.



Dijkstra's Algorithm

- Implementation. How do we implement Dijkstra's algorithm?
- Challenge. Find vertex with smallest distance estimate.

<text><list-item><list-item>

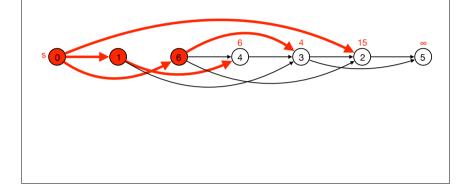

Dijkstra's Algorithm

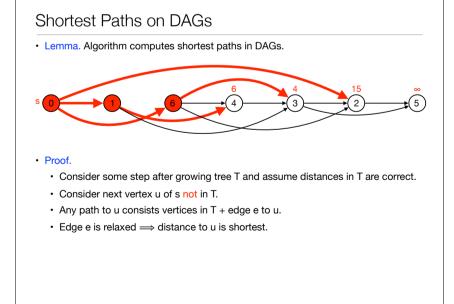
- Priority queues and Dijkstra's algorithm. Complexity of Dijkstra's algorithm depend on priority queue.
- n INSERT
- n EXTRACT-MIN
- < m DECREASE-KEY

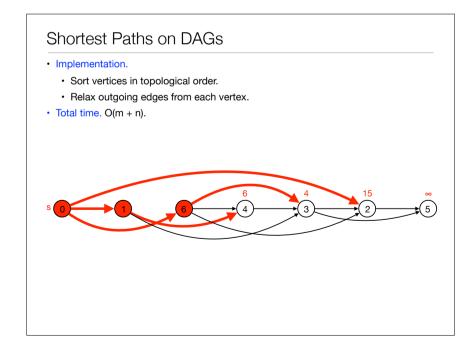
Priority queue	INSERT	EXTRACT-MIN	DECREASE-KEY	Total
array	O(1)	O(n)	O(1)	O(n²)
binary heap	O(log n)	O(log n)	O(log n)	O(m log n)
Fibonacci heap	O(1)†	O(log n)†	O(1)†	O(m + n log n)

† = amortized

• Greed. Dijkstra's algorithm is a greedy algorithm.




Shortest Paths


- Shortest Paths
- Properties of Shortest Paths
- Dijkstra's Algorithm
- Shortest Paths on DAGs

Shortest Paths on DAGs

- Challenge. Is it computationally easier to find shortest paths on DAGs?
- DAG shortest path algoritme.
 - Process vertices in topological order.
 - For each vertex v, relax all edges from v.
- Also works for negative edge weights.

Shortest Paths Variants

Vertices

- Single source.
- Single source, single target.
- All-pairs.

• Edge weights.

- Non-negative.
- Arbitrary.
- Euclidian distances.

· Cycles.

- No cycles
- No negative cycles.

Shortest Paths

- Shortest Paths
- Properties of Shortest Paths
- Dijkstra's Algorithm
- Shortest Paths on DAGs