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Introduction to Graphs

» Undirected Graphs

Undirected graphs

+ Undirected graph. Set of vertices pairwise joined by edges.
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+ Why graphs?
* Models many natural problems from many different areas.
» Thousands of practical applications.
* Hundreds of well-known graph algorithms.
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Terminology

+ Undirected graph. G = (V, E)
+ V = set of vertices
+ E = set of edges (each edge is a pair of vertices)
. n=|V|,m=|E|
+ Path. Sequence of vertices connected by edges.
+ Cycle. Path starting and ending at the same vertex.
+ Degree. deg(v) = the number of neighbors of v, or edges incident to v.
+ Connectivity. A pair of vertices are connected if there is a path between them

V={012,..,12}
E = {(0,1), (0,2) (0,4),2,3),..., (11,12)}

a n=13,m=15

N

Undirected Graphs

. Lemma. ZVEV deg(v) = 2m.

» Proof. How many times is each edge counted in the sum?

Algoritmic Problems on Graphs

+ Path. Is there a path connecting s and t?
+ Shortest path. What is the shortest path connecting s and t?
+ Longest path. What is the longest path connecting s and t?

+ Cycle. Is there a cycle in the graph?
« Euler tour. Is there a cycle that uses each edge exactly once?
+ Hamilton cycle. Is there a cycle that uses each vertex exactly once?

+ Connectivity. Are all pairs of vertices connected?
+ Minimum spanning tree. What is the best way of connecting all vertices?

+ Biconnectivity. Is there a vertex whose removal would cause the graph to be
disconnected?

« Planarity. Is it possible to draw the graph in the plane without edges crossing?
» Graph isomorphism. Do these sets of vertices and edges represent the same graph?
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Representation

+ Graph G with n vertices and m edges.

+ Representation. We need the following operations on graphs.
+ ADJACENT(v, u): determine if u and v are neighbors.
+ NEIGHBORS(V): return all neighbors of v.

+ INSERT(v, u): add the edge (v, u) to G (unless it is already there).
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Adjacency Matrix

Adjacency List

+ Graph G with n vertices and m edges. o )i N\
» Adjacency list. a e e G a

 Array A[0..n-1].
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+ Graph G with n vertices and m edges.
» Adjacency matrix. a e e ° G
» 2D n x n array A.
+ Alij] = 1if i and j are neighbors, 0 otherwisq (3 ) °‘®
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Repraesentation
Data structure ADJACENT NEIGHBOURS INSERT space
adjacency matrix o(1) O(n) o(1) O(n?)
adjacency list O(deg(v)) O(deg(v)) O(deg(v)) O(n+m)

» Real world graphs are often sparse.
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Depth-First Search

+ Algorithm for systematically visiting all vertices and edges.
» Depth first search from vertex s.
+ Unmark all vertices and visit s.
* Visit vertex v:
* Mark v.
+ Visit all unmarked neighbours of v recursively.

* Intuition.
+ Explore from s in some direction, until we read dead end.
+ Backtrack to the last position with unexplored edges.

* Repeat.

+ Discovery time. First time a vertex is visited.
+ Finish time. Last time a vertex is visited.

Depth-First Search

DFS(s)
time = 0
DFS-visIT(s) s

DFS-visiT(v)
v.d = time++
mark v
for each unmarked neighbor u
DFS-visiT(u)
u.m=v
v.f = time++

« Time. (on adjacency list representation)
+ Recursion? once per vertex.
+ O(deg(v)) time spent on vertex v.
. = total O(n + XVEV deg(v)) = O(n + m) time.

+ Only visits vertices connected to s.

Flood Fill

+ Flood fill. Chance the color of a connected area of green pixels.
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+ Algorithm.

+ Build a grid graph and run DFS.

+ Vertex: pixel.

+ Edge: between neighboring pixels of same color.
+ Area: connected component




Connected Components

« Definition. A connected component is a maximal subset of connected vertices.
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+ How to find all connected components?
+ Algorithm.
+ Unmark all vertices.
+ While there is an unmarked vertex:
+ Chose an unmarked vertex v, run DFS from v.

+ Time. O(n + m).
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Breadth-First Search

+ Breadth first search from s.
« Unmark all vertices and initialize queue Q.
+ Mark s and Q.ENQUEUE(s).
+ While Q is not empty:
+ v = Q.DEQUEUE().
« For each unmarked neighbor u of v
» Mark u.
+ Q.ENQUEUE(U).

* Intuition.
+ Explore, starting from s, in all directions - in increasing distance from s.

+ Shortest paths from s.
+ Distance to s in BFS tree = shortest distance to s in the original graph.

Shortest Paths

+ Lemma. BFS finds the length of the shortest path from s to all other vertices.
* Intuition.
+ BFS assigns vertices to layers. Layer number i contains all vertices of distance i

tos. L4 Lo
Lo
S
Ls
» What does each layer contain?
* Lo: {s}
+ L1 all neighbours of Lo.
+ L2: all neighbours if L1 that are not neighbours of Lo
+ Ls: all neighbours of L2 that neither are neighbours of Lo nor L.
+ Li: all neighbours til Li-1 not neighbouring L;for j < i-1

= all vertices of distance i from s.




Breadth-First Search

BFS(s)
mark s
s.d =20 s
Q. ENQUEUE(S)
repeat until Q.ISEMPTY()

v = Q.DEQUEUE()
for each unmarked neighbor u

mark u
u.d =v.d +1
u.m=v

Q. ENQUEUECW)

» Time. (on adjacency list representation)
+ Each vertex is visited at most once.
+ O(deg(v)) time spent on vertex v.
. = total O(n + ngv deg(v)) = O(n + m) time.

+ Only vertices connected to s are visited.

Bipartite Graphs

+ Definition. A graph is bipartite if and only if all vertices can be colored red and blue
such that every edge has exactly one red endpoint and one blue endpoint.

» Equivalent definition. A graph is bipartite if and only if its vertices can be partitioned
into two sets V4 and Va2 such that all edges go between V4 and Va.

» Application.

» Scheduling, matching, assigning clients to servers, assigning jobs to machines,
assigning students to advisors/labs, ...

» Many graph problems are easier on bipartite graphs.

Bipartite Graphs

+ Challenge. Given a graph G, determine whether G is bipartite.

Bipartite Graphs

+ Lemma. A graph G is bipartite if and only if all cycles in G have even length.
* Proof. =
+ If G is bipartite, all cycles start and end on the same side.




Bipartite Graphs

+ Lemma. A graph G is bipartite if and only if all cycles in G have even length.

* Proof. &=

« Choose a vertex v and consider BFS layers Lo, L, ...

+ All cycles have even length

, Lk

+ = There is no edge between vertices of the same layer

+ = We can assign alternating (red, blue) colours to the layers

+ = G is bipartite.

Bipartite Graphs

+ Algorithm.
* Run BFS on G.

+ For each edge in G, check if it's
endpoints are in the same layer.

» Time.
*+ O(n+m)

Graph Algorithms
Algorithm Time Space
Depth first search O(n + m) O(n + m)
Breadsth first search O(n + m) O(n + m)
Connected components O(n + m) O(n + m)
Bipartite O(n + m) O(n + m)

+ All on the adjacency list representation.
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