Introduction to Graphs

+ Undirected Graphs
» Representation
» Depth-First Search
» Connected Components
+ Breadth-First Search
* Bipartite Graphs

Philip Bille

Introduction to Graphs

» Undirected Graphs

Undirected graphs

+ Undirected graph. Set of vertices pairwise joined by edges.

vertex —» o edge

5,50 o

+ Why graphs?
* Models many natural problems from many different areas.
» Thousands of practical applications.
* Hundreds of well-known graph algorithms.

Visualizing the Internet

Visualizing Friendships on Facebook London Metro

facebook

"Visualizing friendships”, Paul Butler

London metro, London Transport

Protein Interaction Networks Applications of Graphs
A -. o Graph Vertices Edges
: . communication computers cables
transport intersections roads
transport airports flight routes
games position valid move
neural network neuron synapses
financial network stocks transactions
circuit logical gates connections
food chain species predator-prey
molecule atom bindings

Protein-protein interaktionsnetverk, t /)

Jeong et al, Nature Review | Genetics

Terminology

+ Undirected graph. G = (V, E)
+ V = set of vertices
+ E = set of edges (each edge is a pair of vertices)
. n=|V|,m=|E|
+ Path. Sequence of vertices connected by edges.
+ Cycle. Path starting and ending at the same vertex.
+ Degree. deg(v) = the number of neighbors of v, or edges incident to v.
+ Connectivity. A pair of vertices are connected if there is a path between them

V={012,..,12}
E = {(0,1), (0,2) (0,4),2,3),..., (11,12)}

a n=13,m=15

N

Undirected Graphs

. Lemma. ZVEV deg(v) = 2m.

» Proof. How many times is each edge counted in the sum?

Algoritmic Problems on Graphs

+ Path. Is there a path connecting s and t?
+ Shortest path. What is the shortest path connecting s and t?
+ Longest path. What is the longest path connecting s and t?

+ Cycle. Is there a cycle in the graph?
« Euler tour. Is there a cycle that uses each edge exactly once?
+ Hamilton cycle. Is there a cycle that uses each vertex exactly once?

+ Connectivity. Are all pairs of vertices connected?
+ Minimum spanning tree. What is the best way of connecting all vertices?

+ Biconnectivity. Is there a vertex whose removal would cause the graph to be
disconnected?

« Planarity. Is it possible to draw the graph in the plane without edges crossing?
» Graph isomorphism. Do these sets of vertices and edges represent the same graph?

Introduction to Graphs

» Representation

Representation

+ Graph G with n vertices and m edges.

+ Representation. We need the following operations on graphs.
+ ADJACENT(v, u): determine if u and v are neighbors.
+ NEIGHBORS(V): return all neighbors of v.

+ INSERT(v, u): add the edge (v, u) to G (unless it is already there).

B o o

Adjacency Matrix

Adjacency List

+ Graph G with n vertices and m edges. o)i N\
» Adjacency list. a e e G a

 Array A[0..n-1].

+ Ali] is a linked list of all neighbors of i. e‘ @‘®
- Complexity? 6»9 \

. Space. O(n + ZVEV deg(v)) = O(n + m)

. o [}-[—{2]
+ Time. 1 [@
+ ADJACENT, NEIGHBOURS, INSERT 2
O(deg(v)) time. 3 _
4 [-l—-{e{E]
s| |
o [_I—{1—{¥]
7 :——E
s j—le]

—
N

©

-
N oo

o
:

0
+ Graph G with n vertices and m edges.
» Adjacency matrix. a e e ° G
» 2D n x n array A.
+ Alij] = 1if i and j are neighbors, 0 otherwisq (3) °‘®
» Complexity? » \
/ 4 O o
+ Space. O(n?)
0 1 23 4586 78 9 101112
* Time. Ofo]1]1]o]1]o]o]o]o]o]o]o]o
* ADJACENT and INSERT in O(1) time. 1|1jojojofojojofojojofofo]oO
+ NEIGHBOURS in O(n) time. 2l1fofof+fof1fofofofofolo]o
3lofof1]ol1f1]o]ofo]olojo]o
4l1fojo]1|of1]o]ofo]o]o]o]o
5lofof1]1|1fo]o]ofo]o]o]o]o
6lofo]jojofofo]o]1|1]o]o]o]o
7]lofojo]Jofofo]1]ofo]o]o]o]o
8lofojoJofofo]1]ofo]o]o]o]o
9lofo]o]ofo]o]ofo|o]of1]1]1
10lofo]ojofo]ojofojo]1|o]o]1
11loJojojo]ololo]olo|1]ofof1
12lofo]o]ofo]o]ofo]o]1|1]1]0
Repraesentation
Data structure ADJACENT NEIGHBOURS INSERT space
adjacency matrix o(1) O(n) o(1) O(n?)
adjacency list O(deg(v)) O(deg(v)) O(deg(v)) O(n+m)

» Real world graphs are often sparse.

Introduction to Graphs

» Depth-First Search
+ Connected Components

Depth-First Search

+ Algorithm for systematically visiting all vertices and edges.
» Depth first search from vertex s.
+ Unmark all vertices and visit s.
* Visit vertex v:
* Mark v.
+ Visit all unmarked neighbours of v recursively.

* Intuition.
+ Explore from s in some direction, until we read dead end.
+ Backtrack to the last position with unexplored edges.

* Repeat.

+ Discovery time. First time a vertex is visited.
+ Finish time. Last time a vertex is visited.

Depth-First Search

DFS(s)
time = 0
DFS-visIT(s) s

DFS-visiT(v)
v.d = time++
mark v
for each unmarked neighbor u
DFS-visiT(u)
u.m=v
v.f = time++

« Time. (on adjacency list representation)
+ Recursion? once per vertex.
+ O(deg(v)) time spent on vertex v.
. = total O(n + XVEV deg(v)) = O(n + m) time.

+ Only visits vertices connected to s.

Flood Fill

+ Flood fill. Chance the color of a connected area of green pixels.

% Tux Paint
FAC)
G ! . ° o
Abe (@ =
m«c@ Biur E\F [o o
&\ b -
o) ° olle
29 S
© ea ° o o
° o o
o’j /7 S S~ Ual
olor () =
’F(Click in the picture to fill that area with color.
+ Algorithm.

+ Build a grid graph and run DFS.

+ Vertex: pixel.

+ Edge: between neighboring pixels of same color.
+ Area: connected component

Connected Components

« Definition. A connected component is a maximal subset of connected vertices.

15 WcZoho

+ How to find all connected components?
+ Algorithm.
+ Unmark all vertices.
+ While there is an unmarked vertex:
+ Chose an unmarked vertex v, run DFS from v.

+ Time. O(n + m).

Introduction to Graphs

» Breadth-First Search
* Bipartite Graphs

Breadth-First Search

+ Breadth first search from s.
« Unmark all vertices and initialize queue Q.
+ Mark s and Q.ENQUEUE(s).
+ While Q is not empty:
+ v = Q.DEQUEUE().
« For each unmarked neighbor u of v
» Mark u.
+ Q.ENQUEUE(U).

* Intuition.
+ Explore, starting from s, in all directions - in increasing distance from s.

+ Shortest paths from s.
+ Distance to s in BFS tree = shortest distance to s in the original graph.

Shortest Paths

+ Lemma. BFS finds the length of the shortest path from s to all other vertices.
* Intuition.
+ BFS assigns vertices to layers. Layer number i contains all vertices of distance i

tos. L4 Lo
Lo
S
Ls
» What does each layer contain?
* Lo: {s}
+ L1 all neighbours of Lo.
+ L2: all neighbours if L1 that are not neighbours of Lo
+ Ls: all neighbours of L2 that neither are neighbours of Lo nor L.
+ Li: all neighbours til Li-1 not neighbouring L;for j < i-1

= all vertices of distance i from s.

Breadth-First Search

BFS(s)
mark s
s.d =20 s
Q. ENQUEUE(S)
repeat until Q.ISEMPTY()

v = Q.DEQUEUE()
for each unmarked neighbor u

mark u
u.d =v.d +1
u.m=v

Q. ENQUEUECW)

» Time. (on adjacency list representation)
+ Each vertex is visited at most once.
+ O(deg(v)) time spent on vertex v.
. = total O(n + ngv deg(v)) = O(n + m) time.

+ Only vertices connected to s are visited.

Bipartite Graphs

+ Definition. A graph is bipartite if and only if all vertices can be colored red and blue
such that every edge has exactly one red endpoint and one blue endpoint.

» Equivalent definition. A graph is bipartite if and only if its vertices can be partitioned
into two sets V4 and Va2 such that all edges go between V4 and Va.

» Application.

» Scheduling, matching, assigning clients to servers, assigning jobs to machines,
assigning students to advisors/labs, ...

» Many graph problems are easier on bipartite graphs.

Bipartite Graphs

+ Challenge. Given a graph G, determine whether G is bipartite.

Bipartite Graphs

+ Lemma. A graph G is bipartite if and only if all cycles in G have even length.
* Proof. =
+ If G is bipartite, all cycles start and end on the same side.

Bipartite Graphs

+ Lemma. A graph G is bipartite if and only if all cycles in G have even length.

* Proof. &=

« Choose a vertex v and consider BFS layers Lo, L, ...

+ All cycles have even length

, Lk

+ = There is no edge between vertices of the same layer

+ = We can assign alternating (red, blue) colours to the layers

+ = G is bipartite.

Bipartite Graphs

+ Algorithm.
* Run BFS on G.

+ For each edge in G, check if it's
endpoints are in the same layer.

» Time.
*+ O(n+m)

Graph Algorithms
Algorithm Time Space
Depth first search O(n + m) O(n + m)
Breadsth first search O(n + m) O(n + m)
Connected components O(n + m) O(n + m)
Bipartite O(n + m) O(n + m)

+ All on the adjacency list representation.

Introduction to Graphs

» Undirected Graphs
» Representation
» Depth-First Search
» Connected Components
+ Breadth-First Search
* Bipartite Graphs

