
Philip Bille

Union Find

• Union Find

• Quick Find

• Quick Union

• Weighted Quick Union

• Path Compression

• Dynamic Connectivity

Philip Bille

Union Find

• Union Find

• Quick Find

• Quick Union

• Weighted Quick Union

• Path Compression

• Dynamic Connectivity

• Union find. Maintain a dynamic family of sets supporting the following operations:

• INIT(n): construct sets {0}, {1},…, {n-1}

• UNION(i,j): forms the union of the two sets that contain i and j. If i and j are in the

same set nothing happens.

• FIND(i): return a representative for the set that contains i.

Union Find

{1, 0, 6} {8, 3, 2, 7} {4, 5} {1, 0, 6, 4, 5} {8, 3, 2, 7}
UNION(5,0)

{0} {1} {2} {3} {4} {5} {6} {7} {8}
INIT(9)

• Applications.

• Dynamic connectivity.

• Minimum spanning tree.

• Unification in logic and compilers.

• Nearest common ancestors in trees.

• Hoshen-Kopelman algorithm in physics.

• Games (Hex and Go)

• Illustration of clever techniques in data structure design.

Union Find

Philip Bille

Union Find

• Union Find

• Quick Find

• Quick Union

• Weighted Quick Union

• Path Compression

• Dynamic Connectivity

{1, 0, 6} {8, 3, 2, 7} {4, 5} {1, 0, 6, 4, 5} {8, 3, 2, 7}
UNION(5,0)

{0} {1} {2} {3} {4} {5} {6} {7} {8}

Quick Find
• Quick find. Maintain array id[0..n-1] such that id[i] = representative for i.

• INIT(n): set elements to be their own representative.

• UNION(i,j): if FIND(i) ≠ FIND(j), update representative for all elements in one of the

sets.

• FIND(i): return representative.

0 1 2 3 4 5 6 7 8
1 1 3 3 5 5 1 3 3

0 1 2 3 4 5 6 7 8
1 1 3 3 1 1 1 3 3id[]

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

INIT(9)

id[]

Quick Find

FIND(i):
return id[i]

UNION(i,j):
iID = FIND(i)
jID = FIND(j)
if (iID ≠ jID)

for k = 0 to n-1
if (id[k] == iID)

id[k] = jID

INIT(n):
for k = 0 to n-1

id[k] = k

0 1 2 3 4 5 6 7 8
1 1 3 3 5 5 1 3 3

0 1 2 3 4 5 6 7 8
1 1 3 3 1 1 1 3 3id[]

• Time.

• O(n) time for INIT, O(n) time for UNION, and O(1) tid for FIND.

{1, 0, 6} {8, 3, 2, 7} {4, 5} {1, 0, 6, 4, 5} {8, 3, 2, 7}
UNION(5,0)

Union Find

• Union Find

• Quick Find

• Quick Union

• Weighted Quick Union

• Path Compression

• Dynamic Connectivity

Quick Union
• Quick union. Maintain each sets as a rooted tree.

• Store trees as array p[0..n-1] such that p[i] is the parent of i and p[root] = root.

Representative is the root of tree.

• INIT(n): create n trees with one element each.

• UNION(i,j): if FIND(i) ≠ FIND(j), make the root of one tree the child of the root of the

other tree.

• FIND(i): follow path to root and return root.

0

1 2

3

4

56

7

8

0

1 2

3

4

5

6

7

8

UNION(5,0)

0 1 2 3 4 5 6 7 8
0 0 7 2 4 4 0 7 7p[]

0 1 2 3 4 5 6 7 8
0 0 7 2 0 4 0 7 7

Quick Union
• INIT(n): create n trees with one element each.

• UNION(i,j): if FIND(i) ≠ FIND(j), make the root of one tree the child of the root of the

other tree.

• FIND(i): follow path to root and return root.

• Exercise. Show data structure after each operation in the following sequence.

• INIT(7), UNION(0,1), UNION(2,3), UNION(5,1), UNION(5,0), UNION(0,3), UNION(5,2),

UNION(4,3), UNION(4,6).

Quick Union
INIT(n):

for k = 0 to n-1
p[k] = k

FIND(i):
while (i != p[i])

i = p[i]
return i

UNION(i,j):
ri = FIND(i)
rj = FIND(j)
if (ri ≠ rj)

p[ri] = rj

0

1 2

3

4

56

7

8

0

1 2

3

4

5

6

7

8

UNION(5,0)

• Time.

• O(n) time for INIT, O(d) tid for UNION and FIND, where d is the depth of the tree.

• UNION and FIND depend on the depth of the tree.

• Bad news. Depth can be n-1.

• Challenge. Can combine trees to limit the depth?

Quick Union

d = 4

d = n-1

Union Find

• Union Find

• Quick Find

• Quick Union

• Weighted Quick Union

• Path Compression

• Dynamic Connectivity

Weighted Quick Union
• Weighted quick union. Extension of quick union.

• Maintain extra array sz[0..n-1] such sz[i] = the size of the subtree rooted at i.

• INIT: as before + initialize sz[0..n-1].

• FIND: as before.

• UNION(i,j): if FIND(i) ≠ FIND(j), make the root of the smaller tree the child of the root

of the larger tree.

• Intuition. UNION balances the trees.

sz[rj] = sz[ri] + sz[rj]

ri rj UNION(i,j)

i

j

ri

rj

i
j

Weighted Quick Union

UNION(i,j):
ri = FIND(i)
rj = FIND(j)
if (ri ≠ rj)

if (sz[ri] < sz[rj])
p[ri] = rj
sz[rj] = sz[ri] + sz[rj]

else
p[rj] = ri
sz[ri] = sz[ri] + sz[rj]

ri rj UNION(i,j)

i

j

ri

rj

i
j

• Lemma. With weighted quick union the depth of a node is at most log2 n.

• Proof.

• Consider node i with depth di.

• Initially di = 0.

• di increases with 1 when the tree is combined with a larger tree.

• The combined tree is at least twice the size.

• We can double the size of trees at most log2 n times.

• ⟹ di ≤ log2 n.

Weighted Quick Union

ii

• Challenge. Can we do even better?

Union Find

Data structure UNION FIND

quick find O(n) O(1)

quick union O(n) O(n)

weighted quick union O(log n) O(log n)

Union Find

• Union Find

• Quick Find

• Quick Union

• Weighted Quick Union

• Path Compression

• Dynamic Connectivity

Path Compression
• Path compression. Compress path on FIND. Make all nodes on the path children of

the root.

• No change in running time for a single FIND. Subsequent FIND become faster.

• Works with both quick union and weighted quick union.

6

8

2

5

9

1110

13

12

1

43

7

6

8

2

5

9

11

10

13

12

1

4

3

7

FIND(9)

Path Compression
• Theorem [Tarjan 1975]. With path compression any sequence of m FIND og UNION

operations on n elements take O(n + m α(m,n)) time.

• α(m,n) is the inverse of Ackermanns function. α(m,n) ≤ 5 for any practical input.

• Theorem [Fredman-Saks 1985]. It is not possible to support m FIND og UNION

operations O(n + m) time.

6

8

2

5

9

1110

13

12

1

43

7

6

8

2

5

9

11

10

13

12

1

4

3

7

FIND(9)

Union Find

• Union Find

• Quick Find

• Quick Union

• Weighted Quick Union

• Path Compression

• Dynamic Connectivity

Dynamic Connectivity
• Dynamic connectivity. Maintain a dynamic graph supporting the following

operations:

• INIT(n): create a graph G med n vertices and no edges.

• CONNECTED(u,v): determine if u og v are connected.

• INSERT(u, v): add edge (u,v). We assume (u,v) does not already exists.

INSERT(3,4)

1

6

3

7

4

8

5

9

1

6

3

7

4

8

5

9

Dynamic Connectivity
• Implementation with union find.

• INIT(n): initialize a union find data structure with n elements.

• CONNECTED(u,v): FIND(u) == FIND(v).

• INSERT(u, v): UNION(u,v)

• Time

• O(n) time for INIT, O(log n) time for CONNECTED, and O(log n) time for INSERT

INSERT(3,4)

1

6

3

7

4

8

5

9

1

6

3

7

4

8

5

9

Union Find

• Union Find

• Quick Find

• Quick Union

• Weighted Quick Union

• Path Compression

• Dynamic Connectivity

