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1.5     CASE STUDY: UNION-FIND

To illustrate our basic approach to developing and analyzing algorithms, we now 
consider a detailed example. Our purpose is to emphasize the following themes.

■ Good algorithms can make the difference between being able to solve a practical 
problem and not being able to address it at all.

■  An efficient algorithm can be as simple to code as an inefficient one.
■ Understanding the performance characteristics of an implementation can be an 

interesting and satisfying intellectual challenge.
■  The scientific method is an important tool in helping us choose among different 

methods for solving the same problem.
■  An iterative refinement process can lead to increasingly efficient algorithms.

These themes are reinforced throughout the book. This prototypical example sets the 
stage for our use of the same general methodology for many other problems. 

The problem that we consider is not a toy problem; it is a fundamental compu-
tational task, and the solution that we develop is of use in a variety of applications, 
from percolation in physical chemistry to connectivity in communications networks. 
We start with a simple solution, then seek to understand that solution’s performance 
characteristics, which help us to see how to improve the algorithm. 

   Dynamic connectivity We start with the following problem specification: The 
input is a sequence of pairs of integers, where each integer represents an object of some 
type and we are to interpret the pair p q as meaning “p is connected to q.” We assume 
that “is connected to” is an      equivalence relation, which means that it is

■ Reflexive : p is connected to p.  
■ Symmetric : If p is connected to q, then q is connected to p.  
■ 

 

   Transitive : If p is connected to q and q is connected to r, then p is connected to r.
An  equivalence relation partitions the objects into equivalence classes. In this case, two 
objects are in the same equivalence class if and only if they are connected. Our goal is 
to write a program to filter out extraneous pairs (pairs where both objects are in the 
same equivalence class) from the sequence. In other words, when the program reads a 
pair p q from the input, it should write the pair to the output only if the pairs it has 
seen to that point do not imply that p is connected to q. If the previous pairs do imply 
that p is connected to q, then the program should ignore the pair p q and proceed to 
read in the next pair. The figure on the facing page gives an example of this process. To 
achieve the desired goal, we need to devise a data structure that can remember sufficient 
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information about the pairs it has seen to be able to decide whether or not a new pair of 
objects is connected. Informally, we refer to the task of designing such a method as the 
dynamic connectivity problem. This problem arises applications such as the following:

Networks. The integers might represent computers in a large network, and the pairs 
might represent connections in the network. Then, our program determines whether 
we need to establish a new direct connection for p and q to be able 
to communicate or whether we can use existing connections to 
set up a communications path. Or, the integers might represent 
contact sites in an electrical circuit, and the pairs might represent 
wires connecting the sites. Or, the integers might represent people 
in a social network, and the pairs might represent friendships. In 
such applications, we might need to process millions of objects 
and billions of connections.   

Variable-name equivalence. In certain programming environ-
ments, it is possible to declare two variable names as being equiv-
alent (references to the same object). After a sequence of such dec-
larations, the system needs to be able to determine whether two 
given names are equivalent. This application is an early one (for 
the  FORTRAN programming language) that motivated the devel-
opment of the algorithms that we are about to consider.  

Mathematical sets. On a more abstract level, you can think of 
the integers as belonging to mathematical sets. When we process a 
pair p q, we are asking whether they belong to the same set. If not, 
we unite p’s set and q’s set, putting them in the same set.

To fix ideas, we will use networking terminology for the rest of 
this section and refer to the objects as sites, the pairs as connec-
tions, and the equivalence classes as  connected components, or just 
components for short. For simplicity, we assume that we have N
sites with integer names, from 0 to N-1. We do so without loss of 
generality because we shall be considering a host of algorithms in 
Chapter 3 that can associate arbitrary names with such integer 
identifiers in an efficient manner.

A larger example that gives some indication of the difficulty of the connectivity 
problem is depicted in the figure at the top of the next page. You can quickly identify 
the component consisting of a single site in the left middle of the diagram and the 

Dynamic connectivity example

0 1 2 3 4

5 6 7 8 9  

4 3

3 8

6 5

9 4

2 1

8 9

5 0

7 2

6 1

1 0

6 7

2 components

don’t print
pairs that

are already
connected
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component consisting of five sites at the bottom left, but you might have difficulty veri-
fying that all of the other sites are connected to one another. For a program, the task is 
even more difficult, because it has to work just with site names and connections and has 
no access to the geometric placement of sites in the diagram. How can we tell quickly 
whether or not any given two sites in such a network are connected? 

 The first task that we face in developing an algorithm is to specify the problem in a 
precise manner.  The more we require of an algorithm, the more time and space we may 
expect it to need to finish the job. It is impossible to quantify this relationship a priori, 
and we often modify a problem specification on finding that it is difficult or expensive 
to solve or, in happy circumstances, on finding that an algorithm can provide informa-
tion more useful than what was called for in the original specification. For example, our 

Medium connectivity example (625 sites, 900 edges, 3 connected components) 

connected
component
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connectivity problem specification requires only that our program be able to determine 
whether or not any given pair p q is connected, and not that it be able to demonstrate a 
set of connections that connect that pair. Such a requirement makes the problem more 
difficult and leads us to a different family of algorithms, which we consider in Section 
4.1.

To specify the problem, we develop an API that encapsulates the basic operations 
that we need: initialize, add a connection between two sites, identify the component 
containing a site, determine whether two sites are in the same component, and count 
the number of components. Thus, we articulate the following API:

public class    UF 

UF(int N) initialize N sites with integer names (0 to N-1) 

void union(int p, int q) add connection between p and q 

int find(int p) component identifier for p (0 to N-1) 
boolean connected(int p, int q) return true if p and q are in the same component

int count() number of components
Union-find API

 
The union() operation merges two components if the two sites are in different com-
ponents, the find() operation returns an integer component identifier for a given site, 
the connected() operation determines whether two sites are in the same component, 
and the count() method returns the number of components. We start with N compo-
nents, and each union() that merges two different components decrements the num-
ber of components by 1.

As we shall soon see, the development of an algorithmic solution for dynamic con-
nectivity thus reduces to the task of developing an implementation of this API. Every 
implementation has to

■  Define a data structure to represent the known connections
■ Develop efficient union(), find(),  connected(), and count() implementa-

tions that are based on that data structure
As usual, the nature of the data structure has a direct impact on the efficiency of the 
algorithms, so data structure and algorithm design go hand in hand. The API already 
specifies the convention that both sites and components will be identified by int val-
ues between 0 and N-1, so it makes sense to use a site-indexed array id[] as our basic 
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data structure to represent the components. We always use the name of one of the sites 
in a component as the component identifier, so you can think of each component as 
being represented by one of its sites. Initially, we start with N components, each site in 
its own component, so we initialize id[i] to i for all i from 0 to N-1. For each site 
i, we keep the information needed by find() to determine the component contain-
ing i in id[i], using various algorithm-dependent strategies. All of our implementa-
tions use a one-line implementation of connected() that returns the boolean value 
find(p) == find(q). 

In summary, our starting point is Algorithm 1.5 on the facing 
page. We maintain two instance variables, the count of components 
and the array id[]. Implementations of find() and union() are 
the topic of the remainder of this section. 

To test the utility of the API and to provide a basis for develop-
ment, we include a client in main() that uses it to solve the dy-
namic connectivity problem. It reads the value of N followed by a 
sequence of pairs of integers (each in the range 0 to N-1), calling 
find() for each pair: If the two sites in the pair are already con-
nected, it moves on to the next pair; if they are not, it calls union()
and prints the pair. Before considering implementations, we also 
prepare test data: the file tinyUF.txt contains the 11 connections 
among 10 sites used in the small example illustrated on page 217, the 
file mediumUF.txt contains the 900 connections among 625 sites 
illustrated on page 218, and the file largeUF.txt is an example with 
2 million connections among 1 millions sites. Our goal is to be able 
to handle inputs such as largeUF.txt in a reasonable amount of 
time.

To analyze the algorithms, we focus on the number of times each 
algorithm accesses an array entry. By doing so, we are implicitly for-
mulating the hypothesis that the running times of the algorithms 
on a particular machine are 
within a constant factor of 

this quantity. This hypothesis is immediate from 
the code, is not difficult to validate through ex-
perimentation, and provides a useful starting 
point for comparing algorithms, as we will see.

% more tinyUF.txt 
10 
4 3 
3 8 
6 5 
9 4 
2 1 
8 9 
5 0 
7 2 
6 1 
1 0 
6 7

% more mediumUF.txt 
625 
528 503 
548 523 
... 
[900 connections]

% more largeUF.txt 
1000000 
786321 134521 
696834 98245 
... 
[2000000 connections]

Union-find   cost model. When 
studying algorithms to imple-
ment the union-find API, we 
count array accesses (the num-
ber of times an array entry is 
accessed, for read or write). 
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ALGORITHM 1.5  Union-find implementation

public class  UF 
{
   private int[] id;     // access to component id (site indexed)
   private int count;    // number of components

   public UF(int N)
   {  // Initialize component id array.
      count = N;
      id = new int[N];
      for (int i = 0; i < N; i++)
         id[i] = i;
   }

   public int count()
   {  return count;  }

   public boolean connected(int p, int q)
   {  return find(p) == find(q);  }

   public int  find(int p)
   public void union(int p, int q)
   // See page 222 (quick-find),page 224 (quick-union) andpage 228 (weighted).

   public static void main(String[] args)
   {  // Solve dynamic connectivity problem on StdIn.
      int N = StdIn.readInt();              // Read number of sites.
      UF uf = new UF(N);                    // Initialize N components.
      while (!StdIn.isEmpty())
      {
         int p = StdIn.readInt();  
         int q = StdIn.readInt();           // Read pair to connect.
         if (uf.connected(p, q)) continue;  // Ignore if connected.
         uf.union(p, q);                    // Combine components
         StdOut.println(p + " " + q);       //   and print connection.
      }
      StdOut.println(uf.count() + " components");
   }

}

Our UF implementations are based on this code, which maintains an array of integers id[] such 
that the find() method returns the same integer for every site in each connected component. The 
union() method must maintain this invariant. 

% java UF < tinyUF.txt 
4 3 
3 8 
6 5 
9 4 
2 1 
5 0 
7 2 
6 1 
2 components
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Implementations We shall consider three different implementations, all based on 
using the site-indexed id[] array, to determine whether two sites are in the same con-
nected component. 

  Quick-find. One approach is to maintain the invariant that p and q are connected 
if and only if id[p] is equal to id[q]. In other words, all sites in a component must 
have the same value in id[]. This method is called quick-find because find(p) just 
returns id[p], which immediately implies that connected(p, q) reduces to just the 
test id[p] == id[q] and returns true if and only 
if p and q are in the same component. To maintain 
the invariant for the call union(p, q), we first check 
whether they are already in the same component, in 
which case there is nothing to do. Otherwise, we are 
faced with the situation that all of the id[] entries 
corresponding to sites in the same component as 
p have one value and all of the id[] entries corre-
sponding to sites in the same component as q have 
another value. To combine the two components into 
one, we have to make all of the id[] entries cor-
responding to both sets of sites the same value, as 
shown in the example at right. To do so, we go through the array, changing all the entries 
with values equal to id[p] to the value id[q]. We could have decided to change all the 
entries equal to id[q] to the value id[p]—the choice between these two alternatives 

is arbitrary. The code for find() and 
union() based on these descriptions, 
given at left, is straightforward. A full 
trace for our development client with 
our sample test data tinyUF.txt is 
shown on the next page. 

public int find(int p) 
{  return id[p];  }

public void union(int p, int q) 
{  // Put p and q into the same component.
   int pID = find(p);
   int qID = find(q);

   // Nothing to do if p and q are already
        in the same component.
   if (pID == qID) return;

   // Rename p’s component to q’s name.
   for (int i = 0; i < id.length; i++)
       if (id[i] == pID) id[i] = qID;
   count--; 
}

 Quick-find

Quick-find overview 

find examines id[5] and id[9]

p q   0 1 2 3 4 5 6 7 8 9

5 9   1 1 1 8 8 1 1 1 8 8

p q   0 1 2 3 4 5 6 7 8 9

5 9   1 1 1 8 8 1 1 1 8 8
      8 8 8 8 8 8 8 8 8 8

union has to change all 1s to 8s
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 Quick-find analysis. The find() operation is certainly quick, as it only accesses the 
id[] array once in order to complete the operation. But quick-find is typically not use-
ful for large problems because union() needs to scan through the whole id[] array for 
each input pair.

Proposition F. The quick-find algorithm uses one array access for each call to 
find() and between N + 3 and 2N + 1 array accesses for each call to union() that 
combines two components.

Proof: Immediate from the code. Each call to connected() tests two entries in the 
id[] array, one for each of the two calls to find(). Each call to union() that com-
bines two components does so by making two calls to find(), testing each of the N 
entries in the id[] array, and changing between 1 and N ! 1 of them.

 

 

In particular, suppose that we use quick-find for the 
dynamic connectivity problem and wind up with a 
single component. This requires at least N!1 calls to 
union(), and, consequently, at least (N"3)(N!1) ~ 
N 2 array accesses—we are led immediately to the hy-
pothesis that dynamic connectivity with quick-find 
can be a quadratic-time process. This analysis gener-
alizes to say that quick-find is quadratic for typical 
applications where we end up with a small number of 
components. You can easily validate this hypothesis 
on your computer with a doubling test (see Exercise 
1.5.23 for an instructive example). Modern comput-
ers can execute hundreds of millions or billions of in-
structions per second, so this cost is not noticeable if 
N is small, but we also might find ourselves with mil-
lions or billions of sites and connections to process in 
a modern application, as represented by our test file 
largeUF.txt. If you are still not convinced and feel 
that you have a particularly fast computer, try using 
quick-find to determine the number of components 
implied by the pairs in largeUF.txt. The inescap-
able conclusion is that we cannot feasibly solve such 
a problem using the quick-find algorithm, so we seek 
better algorithms.Quick-find trace

            id[]

p q  0 1 2 3 4 5 6 7 8 9

4 3  0 1 2 3 4 5 6 7 8 9  

     0 1 2 3 3 5 6 7 8 9  

3 8  0 1 2 3 3 5 6 7 8 9  

     0 1 2 8 8 5 6 7 8 9  

6 5  0 1 2 8 8 5 6 7 8 9  

     0 1 2 8 8 5 5 7 8 9  

9 4  0 1 2 8 8 5 5 7 8 9  

     0 1 2 8 8 5 5 7 8 8  

2 1  0 1 2 8 8 5 5 7 8 8  

     0 1 1 8 8 5 5 7 8 8  

8 9  0 1 1 8 8 5 5 7 8 8  

5 0  0 1 1 8 8 5 5 7 8 8  

     0 1 1 8 8 0 0 7 8 8  

7 2  0 1 1 8 8 0 0 7 8 8  

     0 1 1 8 8 0 0 1 8 8  

6 1  0 1 1 8 8 0 0 1 8 8  

     1 1 1 8 8 1 1 1 8 8  

1 0  1 1 1 8 8 1 1 1 8 8  

6 7  1 1 1 8 8 1 1 1 8 8

id[p] and id[q]
match, so no change

     id[p] and id[q] differ, so
union() changes entries equal

to id[p] to id[q] (in red)
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    Quick-union. The next algorithm that we consider is a complementary method that 
concentrates on speeding up the union() operation. It is based on the same data 
structure—the site-indexed id[] ar-
ray—but we interpret the values dif-
ferently, to define more complicated 
structures. Specifically, the id[] entry 
for each site is the name of another 
site in the same component (possibly 
itself)—we refer to this connection as 
a link. To implement find(), we start 
at the given site, follow its link to an-
other site, follow that site’s link to yet 
another site, and so forth, following 
links until reaching a root, a site that 
has a link to itself (which is guaran-
teed to happen, as you will see). Two 
sites are in the same component if and 
only if this process leads them to the 
same root. To validate this process, we need union(p, q) to maintain this invariant, 
which is easily arranged: we follow links to find the roots associated with p and q, then 
rename one of the components by linking one of these roots to the other; hence the 
name quick-union. Again, we have an arbitrary choice of whether to rename the com-
ponent containing p or the component containing q; the implementation above re-

names the one containing p. The 
figure on the next page shows a 
trace of the quick-union algo-
rithm for tinyUF.txt. This trace 
is best understood in terms of the 
graphical representation depict-
ed at left, which we consider next.

Quick-union overview 

p q   0 1 2 3 4 5 6 7 8 9

5 9   1 1 1 8 3 0 5 1 8 8

p q   0 1 2 3 4 5 6 7 8 9

5 9   1 1 1 8 3 0 5 1 8 8
      1 8 1 8 3 0 5 1 8 8

0

5 4

1 8

6

2 7 3 9

0

5

4

1

8

6

2 7

3 9

find(5) is
id[id[id[5]]]

find(9) is
id[id[9]]

find has to follow links to the root

union changes just one link

id[] is parent-link representation
of a forest of trees

root

8 becomes parent of 1

private int find(int p) 
{  // Find component name.
   while (p != id[p]) p = id[p];
   return p; 
}

public void union(int p, int q) 
{  // Give p and q the same root.
   int pRoot = find(p);
   int qRoot = find(q);
   if (pRoot == qRoot) return;

   id[pRoot] = qRoot;

   count--; 
}

 Quick-union
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  Forest-of-trees representation. The code for quick-union is compact, but a bit opaque. 
Representing sites as nodes (labeled circles) and links as arrows from one node to an-
other gives a graphical representation of the data structure that makes it relatively easy 
to understand the operation of the algorithm. The resulting structures are trees—in 
technical terms, our id[] array 
is a    parent-link representation 
of a forest (set) of trees. To sim-
plify the diagrams, we often omit 
both the arrowheads in the links 
(because they all point upwards) 
and the self-links in the roots 
of the trees. The forests corre-
sponding to the id[] array for 
tinyUF.txt are shown at right. 
When we start at the node cor-
responding to any site and follow 
links, we eventually end up at the 
root of the tree containing that 
node. We can prove this prop-
erty to be true by induction: It is 
true after the array is initialized 
to have every node link to itself, 
and if it is true before a given 
union() operation, it is certainly 
true afterward. Thus, the find() 
method on page 224 returns the 
name of the site at the root (so 
that connected() checks wheth-
er two sites are in the same tree). 
This representation is useful for 
this problem because the nodes 
corresponding to two sites are in 
the same tree if and only if the 
sites are in the same component. 
Moreover, the trees are not difficult to build: the union() implementation on page 224 
combines two trees into one in a single statement, by making the root of one the parent 
of the other. 

Quick-union trace (with corresponding forests of trees)

             id[]

p q   0 1 2 3 4 5 6 7 8 9

4 3   0 1 2 3 4 5 6 7 8 9  

     0 1 2 3 3 5 6 7 8 9  

3 8   0 1 2 3 3 5 6 7 8 9  

     0 1 2 8 3 5 6 7 8 9

6 5   0 1 2 8 3 5 6 7 8 9  

     0 1 2 8 3 5 5 7 8 9

9 4   0 1 2 8 3 5 5 7 8 9  

     0 1 2 8 3 5 5 7 8 8

2 1   0 1 2 8 3 5 5 7 8 8  

     0 1 1 8 3 5 5 7 8 8

8 9   0 1 1 8 3 5 5 7 8 8  

5 0   0 1 1 8 3 5 5 7 8 8  

     0 1 1 8 3 0 5 7 8 8

7 2   0 1 1 8 3 0 5 7 8 8  

     0 1 1 8 3 0 5 1 8 8

6 1   0 1 1 8 3 0 5 1 8 8  

     1 1 1 8 3 0 5 1 8 8

1 0   1 1 1 8 3 0 5 1 8 8

6 7   1 1 1 8 3 0 5 1 8 8
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 Quick-union analysis. The quick-union algorithm would seem to be faster than the 
quick-find algorithm, because it does not have to go through the entire array for each 

input pair; but how much faster is it? Analyzing the 
cost of quick-union is more difficult than it was for 
quick-find, because the cost is more dependent on 
the nature of the input. In the best case, find() just 
needs one array access to find the identifier associ-
ated with a site, as in quick-find; in the worst case, it 
needs 2N + 1 array accesses, as for 0 in the example 
at left (this count is conservative since compiled 
code will typically not do an array access for the 
second reference to id[p] in the while loop). Ac-
cordingly, it is not difficult to construct a best-case 
input for which the running time of our dynamic 
connectivity client is linear; on the other hand it is 
also not difficult to construct a worst-case input for 
which the running time is quadratic (see the dia-
gram at left and Proposition G below). Fortunate-
ly, we do not need to face the problem of analyzing 
quick union and we will not dwell on comparative 
performance of quick-find and quick-union be-

cause we will next examine another variant that is far more efficient than either. For the 
moment, you can regard quick-union as an improvement over quick-find because it 
removes quick-find’s main liability (that union() always takes linear time). This differ-
ence certainly represents an improvement for typical data, but quick-union still has the 
liability that we cannot guarantee it to be substantially faster than quick-find in every 
case (for certain input data, quick-union is no faster than quick-find). 

 Definition. The size of a    tree is its number of nodes. The    depth of a node in a tree 
is the number of links on the path from it to the root. The  height of a tree is the 
maximum depth among its nodes. 

Proposition G.  The number of array accesses used by find() in quick-union is 1 
plus the twice the depth of the node corresponding to the given site. The number 
of array accesses used by union() and connected() is the cost of the two find()
operations (plus 1 for union() if the given sites are in different trees).

Proof: Immediate from the code.

Quick-union worst case

         id[]

p q   0 1 2 3 4 ...

0 1   0 1 2 3 4 ...  

      1 1 2 3 4 ...  

0 2   0 1 2 3 4 ...  

      1 2 2 3 4 ...  

0 3   0 1 2 3 4 ...  

      1 2 3 3 4 ...

0 4   0 1 2 3 4 ...  

      1 2 3 4 4 ...

 .

 .

 . 

...

...

...

...

...

0 1 2 3 4

0

1 2 3 4

0

1

2 3 4

0

1

2

3 4

0

1

2

3

4

depth 4
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Again, suppose that we use quick-union for the dynamic connectivity problem and 
wind up with a single component. An immediate implication of Proposition G is that 
the running time is quadratic, in the worst case. Suppose that the input pairs come 
in the order 0-1, then 0-2, then 0-3, and so forth. After N ! 1 such pairs, we have N
sites all in the same set, and the tree that is formed by the quick-union algorithm has 
height N ! 1, with 0 linking to 1, which links to 2, which links to 3, and so forth (see 
the diagram on the facing page). By Proposition G, the number of array accesses for 
the union() operation for the pair 0 i is exactly 2i + 2 (site 0 is at depth i and site i at 
depth 0). Thus, the total number of array accesses for the find() operations for these 
N pairs is 2 (1 + 2 + . . . + N ) ~N 2.

   Weighted quick-union. Fortunately, there is an 
easy modification to quick-union that allows us 
to guarantee that bad cases such as this one do 
not occur. Rather than arbitrarily connecting the 
second tree to the first for union(), we keep track 
of the size of each tree and always connect the 
smaller tree to the larger. This change requires 
slightly more code and another array to hold the 
node counts, as shown on page 228, but it leads to 
substantial improvements in efficiency. We refer 
to this algorithm as the weighted quick-union al-
gorithm. The forest of trees constructed by this 
algorithm for tinyUF.txt is shown in the figure 
at left on the top of page 229. Even for this small example, the tree height is substantially 
smaller than the height for the unweighted version.

Weighted quick-union analysis. The figure at right on the top of page 229 illustrates 
the worst case for weighted quick union, when the sizes of the trees to be merged by 
union() are always equal (and a power 
of 2). These tree structures look complex, 
but they have the simple property that 
the height of a tree of 2n nodes is n. Fur-
thermore, when we merge two trees of 2n

nodes, we get a tree of 2n"1 nodes, and we 
increase the height of the tree to n"1. This 
observation generalizes to provide a proof 
that the weighted algorithm can guarantee 
logarithmic performance.

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

Weighted quick-union 

weighted

quick-union

always chooses the
better alternative

might put the
larger tree lower

% java WeightedQuickUnionUF < mediumUF.txt 
528 503 
548 523 
... 
3 components

% java WeightedQuickUnionUF < largeUF.txt 
786321 134521 
696834 98245 
... 
6 components

2271.5 ■ Case Study: Union-Find



ptg

 ALGORITHM 1.5 (continued) Union-find implementation (weighted quick-union)

public class    WeightedQuickUnionUF 
{ 
   private int[] id;     // parent link (site indexed)
   private int[] sz;     // size of component for roots (site indexed)
   private int count;    // number of components

   public WeightedQuickUnionUF(int N)
   { 
      count = N;
      id = new int[N];
      for (int i = 0; i < N; i++) id[i] = i;
      sz = new int[N];
      for (int i = 0; i < N; i++) sz[i] = 1;

   }

   public int count()
   {  return count;  }

   public boolean connected(int p, int q)
   {  return find(p) == find(q);  }

   private int find(int p)
   {  // Follow links to find a root.
      while (p != id[p]) p = id[p];
      return p;
   }

   public void union(int p, int q)
   {  
      int i = find(p);
      int j = find(q);
      if (i == j) return;

     // Make smaller root point to larger one.
      if   (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
      else                 { id[j] = i; sz[i] += sz[j]; }
      count--;
   } 
}

This code is best understood in terms of the forest-of-trees representation described in the text. We 
add a site-indexed array sz[] as an instance variable so that union() can link the root of the smaller 
tree to the root of the larger tree. This addition makes it feasible to address large problems.
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Weighted quick-union traces (forests of trees)

reference input

p q

4 3

3 8

6 5

9 4

2 1

8 9

5 0

7 2

6 1

1 0

6 7

worst-case input

p q

0 1

2 3

4 5

6 7

0 2

4 6

0 4

Proposition H.  The  depth of any node in a forest built by weighted quick-union for 
N sites is at most lg N.

Proof: We prove a stronger fact by (strong) induction: The height of every tree of 
size k in the forest is at most lg k. The base case follows from the fact that the tree 
height is 0 when k is 1. By the inductive hypothesis, assume that the tree height of a 
tree of size i is at most lg i for all i < k. When we combine a tree of size i with a tree 
of size j with i # j and i " j = k, we increase the depth of each node in the smaller set 
by 1, but they are now in a tree of size i " j = k, so the property is preserved because 
1+ lg i = lg(i " i ) # lg(i " j ) = lg k.
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Corollary. For weighted quick-union with N sites, the worst-case order of growth 
of the cost of find(), connected(), and union() is log N.

Proof. Each operation does at most a constant number of array accesses for each 
node on the path from a node to a root in the forest.

 

For dynamic connectivity, the practical implication of Proposition H and its corollary 
is that weighted quick-union is the only one of the three algorithms that can feasibly 
be used for huge practical problems. The weighted quick-union algorithm uses at most
c M lg N array accesses to process M connections among N sites for a small constant c. 
This result is in stark contrast to our finding that quick-find always (and quick-union 
sometimes) uses at least MN array accesses. Thus, with weighted quick-union, we can 
guarantee that we can solve huge practical dynamic connectivity problems in a reason-
able amount of time. For the price of a few extra lines of code, we get a program that 
can be millions of times faster than the simpler algorithms for the huge dynamic con-
nectivity problems that we might encounter in practical applications.

A 100-site example is shown on the top of this page. It is evident from this diagram 
that relatively few nodes fall far from the root with weighted quick-union. Indeed it is 
frequently the case that a 1-node tree is merged with a larger tree, which puts the node 
just one link from the root. Empirical studies on huge problems tell us that weighted 
quick-union typically solves practical problems in constant time per operation. We 
could hardly expect to find a more efficient algorithm.

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average depth: 1.52

average depth: 5.11
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Optimal algorithms. Can we find an algorithm that has guaranteed constant-time-
per-operation performance? This question is an extremely difficult one that plagued 
researchers for many years. In pursuit of an answer, a number of variations of quick-
union and weighted quick-union have been studied. For example, the following meth-
od, known as  path compression, is easy to implement. Ideally, we would like every node 
to link directly to the root of its tree, but we do not want to pay the price of changing a 
large number of links, as we did in the quick-find algorithm. We can approach the ideal 
simply by making all the nodes that we do examine directly link to the root. This step 
seems drastic at first blush, but it is easy to implement, and there is nothing sacrosanct 
about the structure of these trees: if we can modify them to make the algorithm more 
efficient, we should do so. To implement path compression, we just add another loop to 
find() that sets the id[] entry corresponding to each node encountered along the way 
to link directly to the root. The net result is to flatten the trees almost completely, ap-
proximating the ideal achieved by the quick-find algorithm. The method is simple and 
effective, but you are not likely to be able to discern any improvement over weighted 
quick-union in a practical situation (see Exercise 1.5.24). Theoretical results about 
the situation are extremely complicated and quite remarkable. Weighted quick union 
with path compression is optimal but not  quite constant-time per operation. That is, not 
only is weighted quick-find with path compression not constant-time per operation 
in the worst case (   amortized), but also there exists no algorithm that can guarantee to 
perform each union-find operation in amortized constant time (under the very general 
“cell probe” model of computation). Weighted quick-union with path compression is 
very close to the best that we can do for this problem.

algorithm
order of growth for N sites (worst case)

constructor union find

quick-find N N 1

quick-union N tree height tree height

weighted quick-union N lg N lg N

weighted quick-union with 
  path compresson N

very, very nearly, but not quite 1 (amortized )
(see Exercise 1.5.13)

impossible N 1 1

 Performance characteristics of union-find algorithms
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Amortized cost plots. As with any data type implementation, it is worthwhile to run 
experiments to test the validity of our performance hypotheses for typical clients, as dis-

cussion in Section 1.4. The figure at left shows 
details of the performance of the algorithms for 
our dynamic connectivity development client 
when solving our 625-site connectivity example 
(mediumUF.txt). Such diagrams are easy to pro-
duce (see Exercise 1.5.16): For the i th connec-
tion processed, we maintain a variable cost that 
counts the number of array accesses (to id[] or 
sz[]) and a variable total that is the sum of 
the total number of array accesses so far. Then 
we plot a gray dot at (i, cost) and a red dot 
at (i, total/i). The red dots are the average 
cost per operation, or amortized cost. These 
plots provide good insights into algorithm be-
havior. For quick-find, every union() opera-
tion uses at least 625 accesses (plus 1 for each 
component merged, up to another 625) and 
every connected() operation uses 2 accesses. 
Initially, most of the connections lead to a call 
on union(), so the cumulative average hovers 
around 625; later, most connections are calls to 
connected() that cause the call to union() to 
be skipped, so the cumulative average decreas-
es, but still remains relatively high. (Inputs that 
lead to a large number of connected() calls that 
cause union() to be skipped will exhibit signifi-
cantly better performance—see Exercise 1.5.23 
for an example). For quick-union, all operations 
initially require only a few array accesses; eventu-
ally, the height of the trees becomes a significant 
factor and the amortized cost grows noticably. 
For weighted quick-union, the tree height stays 
small, none of the operations are expensive, and 
the amortized cost is low. These experiments 

validate our conclusion that weighted quick-union is certainly worth implementing 
and that there is not much further room for improvement for practical problems.

Cost of all operations (625 sites)

quick-find

quick-union

weighted quick-union

0

0 900

1300

458

nu
m

be
r o

f a
rr

ay
 re

fe
re

nc
es

number of connections

0

100

0
20

one gray dot
for each connection
processed by client

red dots give
cumulative average

union() operations
use at least 625 references 

connected() operations
use exactly 2  array accesses

find() operations
become expensive 

no expensive operations

20

8
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Perspective Each of the UF implementations that we considered is an improvement 
over the previous in some intuitive sense, but the process is artificially smooth because 
we have the benefit of hindsight in looking over the development of the algorithms as 
they were studied by researchers over the years. The implementations are simple and 
the problem is well specified, so we can evaluate the various algorithms directly by run-
ning empirical studies. Furthermore, we can use these studies to validate mathematical 
results that quantify the performance of these algorithms. When possible, we follow the 
same basic steps for fundamental problems throughout the book that we have taken for 
union–find algorithms in this section, some of which are highlighted in this list: 

■  Decide on a complete and specific problem statement, including identifying 
fundamental abstract operations that are intrinsic to the problem and an API.

■ Carefully develop a succinct implementation for a straightforward algorithm, 
using a well-thought-out development client and realistic input data.

■ Know when an implementation could not possibly be used to solve problems on 
the scale contemplated and must be improved or abandoned.

■

 
Develop improved implementations through a process of stepwise refinement, 
validating the efficacy of ideas for improvement through empirical analysis, 
mathematical analysis, or both.

■ Find high-level abstract representations of data structures or algorithms in op-
eration that enable effective high-level design of improved versions. 

■ Strive for worst-case performance guarantees when possible, but accept good 
performance on typical data when available.

■

  

 

 

Know when to leave further improvements for detailed in-depth study to skilled 
researchers and move on to the next problem.

The potential for spectacular performance improvements for practical problems such 
as those that we saw for union–find makes algorithm design a compelling field of study.
What other design activities hold the potential to reap savings factors of millions or 
billions, or more?

Developing an efficient algorithm is an intellectually satisfying activity that can have 
direct practical payoff. As the dynamic connectivity problem indicates, a simply stated 
problem can lead us to study numerous algorithms that are not only both useful and 
interesting, but also intricate and challenging to understand. We shall encounter many 
ingenious algorithms that have been developed over the years for a host of practical 
problems. As the scope of applicability of computational solutions to scientific and 
commercial problems widens, so also grows the importance of being able to use ef-
ficient algorithms to solve known problems and of being able to develop efficient solu-
tions to new problems.
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Q&A

 

Q. I’d like to add a delete() method to the API that allows clients to delete connec-
tions. Any advice on how to proceed?

A. No one has devised an algorithm as simple and efficient as the ones in this section 
that can handle deletions. This theme recurs throughout this book. Several of the data 
structures that we consider have the property that deleting something is much more 
difficult than adding something.

Q. What is the  cell-probe model?

A. A model of computation where we only count accesses to a random-access memory 
large enough to hold the input and consider all other operations to be free.
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EXERCISES

 

 

1.5.1  Show the contents of the id[] array and the number of times the ar-
ray is accessed for each input pair when you use quick-find for the sequence 
9-0 3-4 5-8 7-2 2-1 5-7 0-3 4-2.

1.5.2 Do Exercise 1.5.1, but use quick-union (page 224). In addition, draw the forest of 
trees represented by the id[] array after each input pair is processed.

1.5.3 Do Exercise 1.5.1, but use weighted quick-union (page 228). 

1.5.4 Show the contents of the sz[] and id[] arrays and the number of array accesses 
for each input pair corresponding to the weighted quick-union examples in the text   
(both the reference input and the worst-case input).

1.5.5  Estimate the minimum amount of time (in days) that would be required for 
quick-find to solve a dynamic connectivity problem with 109 sites and 106 input pairs, 
on a computer capable of executing 109 instructions per second. Assume that each itera-
tion of the inner for loop requires 10 machine instructions.

1.5.6 Repeat Exercise 1.5.5 for weighted quick-union.

1.5.7  Develop classes QuickUnionUF and QuickFindUF that implement quick-union 
and quick-find, respectively. 

1.5.8 Give a counterexample that shows why this intuitive implementation of union()
for quick-find is not correct:

public void union(int p, int q) 
{ 
   if (connected(p, q)) return;

   // Rename p’s component to q’s name.
   for (int i = 0; i < id.length; i++)
       if (id[i] == id[p]) id[i] = id[q];
   count--; 
}

1.5.9 Draw the tree corresponding to the id[] array depicted at 
right. Can this be the result of running weighted quick-union? 
Explain why this is impossible or give a sequence of operations 
that results in this array.

i    0 1 2 3 4 5 6 7 8 9

id[i]  1 1 3 1 5 6 1 3 4 5
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1.5.10 In the weighted quick-union algorithm, suppose that we set id[find(p)] to q
instead of to id[find(q)]. Would the resulting algorithm be correct?

Answer : Yes, but it would increase the tree height, so the performance guarantee would 
be invalid.

1.5.11 Implement  weighted quick-find, where you always change the id[] entries of 
the smaller component to the identifier of the larger component. How does this change 
affect performance?

EXERCISES (continued)
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CREATIVE PROBLEMS

1.5.12     Quick-union with path compression. Modify quick-union (page 224) to include 
path compression, by adding a loop to union() that links every site on the paths from 
p and q to the roots of their trees to the root of the new tree. Give a sequence of input 
pairs that causes this method to produce a path of length 4. Note : The  amortized cost 
per operation for this algorithm is known to be logarithmic.

1.5.13       Weighted quick-union with path compression. Modify weighted quick-union 
(Algorithm 1.5) to implement path compression, as described in Exercise 1.5.12. 
Give a sequence of input pairs that causes this method to produce a tree of height 4.
Note : The amortized cost per operation for this algorithm is known to be bounded by a 
function known as the inverse Ackermann function and is less than 5 for any conceivable 
practical value of N.

1.5.14   Weighted quick-union by height. Develop a UF implementation that uses the 
same basic strategy as weighted quick-union but keeps track of tree height and always 
links the shorter tree to the taller one. Prove a logarithmic upper bound on the height 
of the trees for N sites with your algorithm.

1.5.15     Binomial trees. Show that the number of nodes at each level in the worst-case 
trees for weighted quick-union are binomial coefficients. Compute the average depth of 
a node in a worst-case tree with N = 2n nodes. 

1.5.16    Amortized costs plots. Instrument your implementations from Exercise 1.5.7
to make amortized costs plots like those in the text. 

1.5.17    Random connections. Develop a UF client ErdosRenyi that takes an integer 
value N from the command line, generates random pairs of integers between 0 and N-1, 
calling connected() to determine if they are connected and then union() if not (as in 
our development client), looping until all sites are connected, and printing the number 
of connections generated. Package your program as a static method count() that takes 
N as argument and returns the number of connections and a main() that takes N from 
the command line, calls count(), and prints the returned value.

1.5.18    Random grid generator. Write a program RandomGrid that takes an int value 
N from the command line, generates all the connections in an N-by-N grid, puts them 
in random order, randomly orients them (so that p q and q p are equally likely to oc-
cur), and prints the result to standard output. To randomly order the connections, use 
a RandomBag (see Exercise 1.3.34 on page 167). To encapsulate p and q in a single object, 
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use the Connection nested class shown below. Package your program as two static 
methods:  generate(), which takes N as argument and returns an array of connec-
tions, and main(), which takes N from the command line, calls generate(), and iterates 
through the returned array to print the connections. 

1.5.19  Animation. Write a RandomGrid client (see Exercise 1.5.18) that uses 
UnionFind as in our development client to check connectivity and uses StdDraw to 
draw the connections as they are processed.

1.5.20  Dynamic growth. Using linked lists or a resizing array, develop a weighted 
quick-union implementation that removes the restriction on needing the number of 
objects ahead of time. Add a method newSite() to the API, which returns an int
identifier.

private class Connection 
{
   int p;
   int q;

   public Connection(int p, int q)
   {  this.p = p; this.q = q;  } 
}

Record to encapsulate connections

CREATIVE PROBLEMS (continued)
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EXPERIMENTS

 

 

1.5.21   Erdös-Renyi model. Use your client from Exercise 1.5.17 to test the hypothesis 
that the number of pairs generated to get one component is ~ ½N ln N.

1.5.22    Doubling test for Erdös-Renyi model. Develop a performance-testing client that 
takes an int value T from the command line and performs T trials of the following ex-
periment: Use your client from Exercise 1.5.17 to generate random connections, using 
UnionFind to determine connectivity as in our development client, looping until all 
sites are connected. For each N, print the value of N, the average number of connections 
processed, and the ratio of the running time to the previous. Use your program to vali-
date the hypotheses in the text that the running times for quick-find and quick-union 
are quadratic and weighted quick-union is near-linear. 

1.5.23    Compare quick-find with quick-union for Erdös-Renyi model. Develop a perfor-
mance-testing client that takes an int value T from the command line and performs 
T trials of the following experiment: Use your client from Exercise 1.5.17 to generate 
random connections. Save the connections, so that you can use both quick-union and 
quick-find to determine connectivity as in our development client, looping until all 
sites are connected. For each N, print the value of N and the ratio of the two running 
times. 

1.5.24    Fast algorithms for Erdös-Renyi model. Add weighted quick-union and weight-
ed quick-union with path compression to your tests from Exercise 1.5.23 . Can you 
discern a difference between these two algorithms? 

1.5.25  Doubling test for random grids. Develop a performance-testing client that takes 
an int value T from the command line and performs T trials of the following experie-
ment: Use your client from Exercise 1.5.18 to generate the connections in an N-by-N 
square grid, randomly oriented and in random order, then use UnionFind to determine 
connectivity as in our development client, looping until all sites are connected. For each 
N, print the value of N, the average number of connections processed, and the ratio of 
the running time to the previous. Use your program to validate the hypotheses in the 
text that the running times for quick-find and quick-union are quadratic and weighted 
quick-union is near-linear. Note : As N doubles, the number of sites in the grid increases 
by a factor of 4, so expect a doubling factor of 16 for quadratic and 4 for linear.
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1.5.26    Amortized plot for Erdös-Renyi. Develop a client that takes an int value N from 
the command line and does an amortized plot of the cost of all operations in the style 
of the plots in the text for the process of generating random pairs of integers between 0
and N-1, calling connected() to determine if they are connected and then union() if 
not (as in our development client), looping until all sites are connected.

EXPERIMENTS (continued)
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