
ptg

1.5 CASE STUDY: UNION-FIND

To illustrate our basic approach to developing and analyzing algorithms, we now
consider a detailed example. Our purpose is to emphasize the following themes.

■ Good algorithms can make the difference between being able to solve a practical
problem and not being able to address it at all.

■ An efficient algorithm can be as simple to code as an inefficient one.
■ Understanding the performance characteristics of an implementation can be an

interesting and satisfying intellectual challenge.
■ The scientific method is an important tool in helping us choose among different

methods for solving the same problem.
■ An iterative refinement process can lead to increasingly efficient algorithms.

These themes are reinforced throughout the book. This prototypical example sets the
stage for our use of the same general methodology for many other problems.

The problem that we consider is not a toy problem; it is a fundamental compu-
tational task, and the solution that we develop is of use in a variety of applications,
from percolation in physical chemistry to connectivity in communications networks.
We start with a simple solution, then seek to understand that solution’s performance
characteristics, which help us to see how to improve the algorithm.

 Dynamic connectivity We start with the following problem specification: The
input is a sequence of pairs of integers, where each integer represents an object of some
type and we are to interpret the pair p q as meaning “p is connected to q.” We assume
that “is connected to” is an equivalence relation, which means that it is

■ Reflexive : p is connected to p.
■ Symmetric : If p is connected to q, then q is connected to p.
■

 Transitive : If p is connected to q and q is connected to r, then p is connected to r.
An equivalence relation partitions the objects into equivalence classes. In this case, two
objects are in the same equivalence class if and only if they are connected. Our goal is
to write a program to filter out extraneous pairs (pairs where both objects are in the
same equivalence class) from the sequence. In other words, when the program reads a
pair p q from the input, it should write the pair to the output only if the pairs it has
seen to that point do not imply that p is connected to q. If the previous pairs do imply
that p is connected to q, then the program should ignore the pair p q and proceed to
read in the next pair. The figure on the facing page gives an example of this process. To
achieve the desired goal, we need to devise a data structure that can remember sufficient

216

ptg

information about the pairs it has seen to be able to decide whether or not a new pair of
objects is connected. Informally, we refer to the task of designing such a method as the
dynamic connectivity problem. This problem arises applications such as the following:

Networks. The integers might represent computers in a large network, and the pairs
might represent connections in the network. Then, our program determines whether
we need to establish a new direct connection for p and q to be able
to communicate or whether we can use existing connections to
set up a communications path. Or, the integers might represent
contact sites in an electrical circuit, and the pairs might represent
wires connecting the sites. Or, the integers might represent people
in a social network, and the pairs might represent friendships. In
such applications, we might need to process millions of objects
and billions of connections.

Variable-name equivalence. In certain programming environ-
ments, it is possible to declare two variable names as being equiv-
alent (references to the same object). After a sequence of such dec-
larations, the system needs to be able to determine whether two
given names are equivalent. This application is an early one (for
the FORTRAN programming language) that motivated the devel-
opment of the algorithms that we are about to consider.

Mathematical sets. On a more abstract level, you can think of
the integers as belonging to mathematical sets. When we process a
pair p q, we are asking whether they belong to the same set. If not,
we unite p’s set and q’s set, putting them in the same set.

To fix ideas, we will use networking terminology for the rest of
this section and refer to the objects as sites, the pairs as connec-
tions, and the equivalence classes as connected components, or just
components for short. For simplicity, we assume that we have N
sites with integer names, from 0 to N-1. We do so without loss of
generality because we shall be considering a host of algorithms in
Chapter 3 that can associate arbitrary names with such integer
identifiers in an efficient manner.

A larger example that gives some indication of the difficulty of the connectivity
problem is depicted in the figure at the top of the next page. You can quickly identify
the component consisting of a single site in the left middle of the diagram and the

Dynamic connectivity example

0 1 2 3 4

5 6 7 8 9

4 3

3 8

6 5

9 4

2 1

8 9

5 0

7 2

6 1

1 0

6 7

2 components

don’t print
pairs that

are already
connected

2171.5 ■ Case Study: Union-Find

ptg

component consisting of five sites at the bottom left, but you might have difficulty veri-
fying that all of the other sites are connected to one another. For a program, the task is
even more difficult, because it has to work just with site names and connections and has
no access to the geometric placement of sites in the diagram. How can we tell quickly
whether or not any given two sites in such a network are connected?

 The first task that we face in developing an algorithm is to specify the problem in a
precise manner. The more we require of an algorithm, the more time and space we may
expect it to need to finish the job. It is impossible to quantify this relationship a priori,
and we often modify a problem specification on finding that it is difficult or expensive
to solve or, in happy circumstances, on finding that an algorithm can provide informa-
tion more useful than what was called for in the original specification. For example, our

Medium connectivity example (625 sites, 900 edges, 3 connected components)

connected
component

218 CHAPTER 1 ■ Fundamentals

ptg

connectivity problem specification requires only that our program be able to determine
whether or not any given pair p q is connected, and not that it be able to demonstrate a
set of connections that connect that pair. Such a requirement makes the problem more
difficult and leads us to a different family of algorithms, which we consider in Section
4.1.

To specify the problem, we develop an API that encapsulates the basic operations
that we need: initialize, add a connection between two sites, identify the component
containing a site, determine whether two sites are in the same component, and count
the number of components. Thus, we articulate the following API:

public class UF

UF(int N) initialize N sites with integer names (0 to N-1)

void union(int p, int q) add connection between p and q

int find(int p) component identifier for p (0 to N-1)
boolean connected(int p, int q) return true if p and q are in the same component

int count() number of components
Union-find API

The union() operation merges two components if the two sites are in different com-
ponents, the find() operation returns an integer component identifier for a given site,
the connected() operation determines whether two sites are in the same component,
and the count() method returns the number of components. We start with N compo-
nents, and each union() that merges two different components decrements the num-
ber of components by 1.

As we shall soon see, the development of an algorithmic solution for dynamic con-
nectivity thus reduces to the task of developing an implementation of this API. Every
implementation has to

■ Define a data structure to represent the known connections
■ Develop efficient union(), find(), connected(), and count() implementa-

tions that are based on that data structure
As usual, the nature of the data structure has a direct impact on the efficiency of the
algorithms, so data structure and algorithm design go hand in hand. The API already
specifies the convention that both sites and components will be identified by int val-
ues between 0 and N-1, so it makes sense to use a site-indexed array id[] as our basic

2191.5 ■ Case Study: Union-Find

ptg

data structure to represent the components. We always use the name of one of the sites
in a component as the component identifier, so you can think of each component as
being represented by one of its sites. Initially, we start with N components, each site in
its own component, so we initialize id[i] to i for all i from 0 to N-1. For each site
i, we keep the information needed by find() to determine the component contain-
ing i in id[i], using various algorithm-dependent strategies. All of our implementa-
tions use a one-line implementation of connected() that returns the boolean value
find(p) == find(q).

In summary, our starting point is Algorithm 1.5 on the facing
page. We maintain two instance variables, the count of components
and the array id[]. Implementations of find() and union() are
the topic of the remainder of this section.

To test the utility of the API and to provide a basis for develop-
ment, we include a client in main() that uses it to solve the dy-
namic connectivity problem. It reads the value of N followed by a
sequence of pairs of integers (each in the range 0 to N-1), calling
find() for each pair: If the two sites in the pair are already con-
nected, it moves on to the next pair; if they are not, it calls union()
and prints the pair. Before considering implementations, we also
prepare test data: the file tinyUF.txt contains the 11 connections
among 10 sites used in the small example illustrated on page 217, the
file mediumUF.txt contains the 900 connections among 625 sites
illustrated on page 218, and the file largeUF.txt is an example with
2 million connections among 1 millions sites. Our goal is to be able
to handle inputs such as largeUF.txt in a reasonable amount of
time.

To analyze the algorithms, we focus on the number of times each
algorithm accesses an array entry. By doing so, we are implicitly for-
mulating the hypothesis that the running times of the algorithms
on a particular machine are
within a constant factor of

this quantity. This hypothesis is immediate from
the code, is not difficult to validate through ex-
perimentation, and provides a useful starting
point for comparing algorithms, as we will see.

% more tinyUF.txt
10
4 3
3 8
6 5
9 4
2 1
8 9
5 0
7 2
6 1
1 0
6 7

% more mediumUF.txt
625
528 503
548 523
...
[900 connections]

% more largeUF.txt
1000000
786321 134521
696834 98245
...
[2000000 connections]

Union-find cost model. When
studying algorithms to imple-
ment the union-find API, we
count array accesses (the num-
ber of times an array entry is
accessed, for read or write).

220 CHAPTER 1 ■ Fundamentals

ptg

ALGORITHM 1.5 Union-find implementation

public class UF
{
 private int[] id; // access to component id (site indexed)
 private int count; // number of components

 public UF(int N)
 { // Initialize component id array.
 count = N;
 id = new int[N];
 for (int i = 0; i < N; i++)
 id[i] = i;
 }

 public int count()
 { return count; }

 public boolean connected(int p, int q)
 { return find(p) == find(q); }

 public int find(int p)
 public void union(int p, int q)
 // See page 222 (quick-find),page 224 (quick-union) andpage 228 (weighted).

 public static void main(String[] args)
 { // Solve dynamic connectivity problem on StdIn.
 int N = StdIn.readInt(); // Read number of sites.
 UF uf = new UF(N); // Initialize N components.
 while (!StdIn.isEmpty())
 {
 int p = StdIn.readInt();
 int q = StdIn.readInt(); // Read pair to connect.
 if (uf.connected(p, q)) continue; // Ignore if connected.
 uf.union(p, q); // Combine components
 StdOut.println(p + " " + q); // and print connection.
 }
 StdOut.println(uf.count() + " components");
 }

}

Our UF implementations are based on this code, which maintains an array of integers id[] such
that the find() method returns the same integer for every site in each connected component. The
union() method must maintain this invariant.

% java UF < tinyUF.txt
4 3
3 8
6 5
9 4
2 1
5 0
7 2
6 1
2 components

2211.5 ■ Case Study: Union-Find

ptg

Implementations We shall consider three different implementations, all based on
using the site-indexed id[] array, to determine whether two sites are in the same con-
nected component.

 Quick-find. One approach is to maintain the invariant that p and q are connected
if and only if id[p] is equal to id[q]. In other words, all sites in a component must
have the same value in id[]. This method is called quick-find because find(p) just
returns id[p], which immediately implies that connected(p, q) reduces to just the
test id[p] == id[q] and returns true if and only
if p and q are in the same component. To maintain
the invariant for the call union(p, q), we first check
whether they are already in the same component, in
which case there is nothing to do. Otherwise, we are
faced with the situation that all of the id[] entries
corresponding to sites in the same component as
p have one value and all of the id[] entries corre-
sponding to sites in the same component as q have
another value. To combine the two components into
one, we have to make all of the id[] entries cor-
responding to both sets of sites the same value, as
shown in the example at right. To do so, we go through the array, changing all the entries
with values equal to id[p] to the value id[q]. We could have decided to change all the
entries equal to id[q] to the value id[p]—the choice between these two alternatives

is arbitrary. The code for find() and
union() based on these descriptions,
given at left, is straightforward. A full
trace for our development client with
our sample test data tinyUF.txt is
shown on the next page.

public int find(int p)
{ return id[p]; }

public void union(int p, int q)
{ // Put p and q into the same component.
 int pID = find(p);
 int qID = find(q);

 // Nothing to do if p and q are already
 in the same component.
 if (pID == qID) return;

 // Rename p’s component to q’s name.
 for (int i = 0; i < id.length; i++)
 if (id[i] == pID) id[i] = qID;
 count--;
}

 Quick-find

Quick-find overview

find examines id[5] and id[9]

p q 0 1 2 3 4 5 6 7 8 9

5 9 1 1 1 8 8 1 1 1 8 8

p q 0 1 2 3 4 5 6 7 8 9

5 9 1 1 1 8 8 1 1 1 8 8
 8 8 8 8 8 8 8 8 8 8

union has to change all 1s to 8s

222 CHAPTER 1 ■ Fundamentals

ptg

 Quick-find analysis. The find() operation is certainly quick, as it only accesses the
id[] array once in order to complete the operation. But quick-find is typically not use-
ful for large problems because union() needs to scan through the whole id[] array for
each input pair.

Proposition F. The quick-find algorithm uses one array access for each call to
find() and between N + 3 and 2N + 1 array accesses for each call to union() that
combines two components.

Proof: Immediate from the code. Each call to connected() tests two entries in the
id[] array, one for each of the two calls to find(). Each call to union() that com-
bines two components does so by making two calls to find(), testing each of the N
entries in the id[] array, and changing between 1 and N ! 1 of them.

In particular, suppose that we use quick-find for the
dynamic connectivity problem and wind up with a
single component. This requires at least N!1 calls to
union(), and, consequently, at least (N"3)(N!1) ~
N 2 array accesses—we are led immediately to the hy-
pothesis that dynamic connectivity with quick-find
can be a quadratic-time process. This analysis gener-
alizes to say that quick-find is quadratic for typical
applications where we end up with a small number of
components. You can easily validate this hypothesis
on your computer with a doubling test (see Exercise
1.5.23 for an instructive example). Modern comput-
ers can execute hundreds of millions or billions of in-
structions per second, so this cost is not noticeable if
N is small, but we also might find ourselves with mil-
lions or billions of sites and connections to process in
a modern application, as represented by our test file
largeUF.txt. If you are still not convinced and feel
that you have a particularly fast computer, try using
quick-find to determine the number of components
implied by the pairs in largeUF.txt. The inescap-
able conclusion is that we cannot feasibly solve such
a problem using the quick-find algorithm, so we seek
better algorithms.Quick-find trace

 id[]

p q 0 1 2 3 4 5 6 7 8 9

4 3 0 1 2 3 4 5 6 7 8 9

 0 1 2 3 3 5 6 7 8 9

3 8 0 1 2 3 3 5 6 7 8 9

 0 1 2 8 8 5 6 7 8 9

6 5 0 1 2 8 8 5 6 7 8 9

 0 1 2 8 8 5 5 7 8 9

9 4 0 1 2 8 8 5 5 7 8 9

 0 1 2 8 8 5 5 7 8 8

2 1 0 1 2 8 8 5 5 7 8 8

 0 1 1 8 8 5 5 7 8 8

8 9 0 1 1 8 8 5 5 7 8 8

5 0 0 1 1 8 8 5 5 7 8 8

 0 1 1 8 8 0 0 7 8 8

7 2 0 1 1 8 8 0 0 7 8 8

 0 1 1 8 8 0 0 1 8 8

6 1 0 1 1 8 8 0 0 1 8 8

 1 1 1 8 8 1 1 1 8 8

1 0 1 1 1 8 8 1 1 1 8 8

6 7 1 1 1 8 8 1 1 1 8 8

id[p] and id[q]
match, so no change

 id[p] and id[q] differ, so
union() changes entries equal

to id[p] to id[q] (in red)

2231.5 ■ Case Study: Union-Find

ptg

 Quick-union. The next algorithm that we consider is a complementary method that
concentrates on speeding up the union() operation. It is based on the same data
structure—the site-indexed id[] ar-
ray—but we interpret the values dif-
ferently, to define more complicated
structures. Specifically, the id[] entry
for each site is the name of another
site in the same component (possibly
itself)—we refer to this connection as
a link. To implement find(), we start
at the given site, follow its link to an-
other site, follow that site’s link to yet
another site, and so forth, following
links until reaching a root, a site that
has a link to itself (which is guaran-
teed to happen, as you will see). Two
sites are in the same component if and
only if this process leads them to the
same root. To validate this process, we need union(p, q) to maintain this invariant,
which is easily arranged: we follow links to find the roots associated with p and q, then
rename one of the components by linking one of these roots to the other; hence the
name quick-union. Again, we have an arbitrary choice of whether to rename the com-
ponent containing p or the component containing q; the implementation above re-

names the one containing p. The
figure on the next page shows a
trace of the quick-union algo-
rithm for tinyUF.txt. This trace
is best understood in terms of the
graphical representation depict-
ed at left, which we consider next.

Quick-union overview

p q 0 1 2 3 4 5 6 7 8 9

5 9 1 1 1 8 3 0 5 1 8 8

p q 0 1 2 3 4 5 6 7 8 9

5 9 1 1 1 8 3 0 5 1 8 8
 1 8 1 8 3 0 5 1 8 8

0

5 4

1 8

6

2 7 3 9

0

5

4

1

8

6

2 7

3 9

find(5) is
id[id[id[5]]]

find(9) is
id[id[9]]

find has to follow links to the root

union changes just one link

id[] is parent-link representation
of a forest of trees

root

8 becomes parent of 1

private int find(int p)
{ // Find component name.
 while (p != id[p]) p = id[p];
 return p;
}

public void union(int p, int q)
{ // Give p and q the same root.
 int pRoot = find(p);
 int qRoot = find(q);
 if (pRoot == qRoot) return;

 id[pRoot] = qRoot;

 count--;
}

 Quick-union

224 CHAPTER 1 ■ Fundamentals

ptg

 Forest-of-trees representation. The code for quick-union is compact, but a bit opaque.
Representing sites as nodes (labeled circles) and links as arrows from one node to an-
other gives a graphical representation of the data structure that makes it relatively easy
to understand the operation of the algorithm. The resulting structures are trees—in
technical terms, our id[] array
is a parent-link representation
of a forest (set) of trees. To sim-
plify the diagrams, we often omit
both the arrowheads in the links
(because they all point upwards)
and the self-links in the roots
of the trees. The forests corre-
sponding to the id[] array for
tinyUF.txt are shown at right.
When we start at the node cor-
responding to any site and follow
links, we eventually end up at the
root of the tree containing that
node. We can prove this prop-
erty to be true by induction: It is
true after the array is initialized
to have every node link to itself,
and if it is true before a given
union() operation, it is certainly
true afterward. Thus, the find()
method on page 224 returns the
name of the site at the root (so
that connected() checks wheth-
er two sites are in the same tree).
This representation is useful for
this problem because the nodes
corresponding to two sites are in
the same tree if and only if the
sites are in the same component.
Moreover, the trees are not difficult to build: the union() implementation on page 224
combines two trees into one in a single statement, by making the root of one the parent
of the other.

Quick-union trace (with corresponding forests of trees)

 id[]

p q 0 1 2 3 4 5 6 7 8 9

4 3 0 1 2 3 4 5 6 7 8 9

 0 1 2 3 3 5 6 7 8 9

3 8 0 1 2 3 3 5 6 7 8 9

 0 1 2 8 3 5 6 7 8 9

6 5 0 1 2 8 3 5 6 7 8 9

 0 1 2 8 3 5 5 7 8 9

9 4 0 1 2 8 3 5 5 7 8 9

 0 1 2 8 3 5 5 7 8 8

2 1 0 1 2 8 3 5 5 7 8 8

 0 1 1 8 3 5 5 7 8 8

8 9 0 1 1 8 3 5 5 7 8 8

5 0 0 1 1 8 3 5 5 7 8 8

 0 1 1 8 3 0 5 7 8 8

7 2 0 1 1 8 3 0 5 7 8 8

 0 1 1 8 3 0 5 1 8 8

6 1 0 1 1 8 3 0 5 1 8 8

 1 1 1 8 3 0 5 1 8 8

1 0 1 1 1 8 3 0 5 1 8 8

6 7 1 1 1 8 3 0 5 1 8 8

2251.5 ■ Case Study: Union-Find

ptg

 Quick-union analysis. The quick-union algorithm would seem to be faster than the
quick-find algorithm, because it does not have to go through the entire array for each

input pair; but how much faster is it? Analyzing the
cost of quick-union is more difficult than it was for
quick-find, because the cost is more dependent on
the nature of the input. In the best case, find() just
needs one array access to find the identifier associ-
ated with a site, as in quick-find; in the worst case, it
needs 2N + 1 array accesses, as for 0 in the example
at left (this count is conservative since compiled
code will typically not do an array access for the
second reference to id[p] in the while loop). Ac-
cordingly, it is not difficult to construct a best-case
input for which the running time of our dynamic
connectivity client is linear; on the other hand it is
also not difficult to construct a worst-case input for
which the running time is quadratic (see the dia-
gram at left and Proposition G below). Fortunate-
ly, we do not need to face the problem of analyzing
quick union and we will not dwell on comparative
performance of quick-find and quick-union be-

cause we will next examine another variant that is far more efficient than either. For the
moment, you can regard quick-union as an improvement over quick-find because it
removes quick-find’s main liability (that union() always takes linear time). This differ-
ence certainly represents an improvement for typical data, but quick-union still has the
liability that we cannot guarantee it to be substantially faster than quick-find in every
case (for certain input data, quick-union is no faster than quick-find).

 Definition. The size of a tree is its number of nodes. The depth of a node in a tree
is the number of links on the path from it to the root. The height of a tree is the
maximum depth among its nodes.

Proposition G. The number of array accesses used by find() in quick-union is 1
plus the twice the depth of the node corresponding to the given site. The number
of array accesses used by union() and connected() is the cost of the two find()
operations (plus 1 for union() if the given sites are in different trees).

Proof: Immediate from the code.

Quick-union worst case

 id[]

p q 0 1 2 3 4 ...

0 1 0 1 2 3 4 ...

 1 1 2 3 4 ...

0 2 0 1 2 3 4 ...

 1 2 2 3 4 ...

0 3 0 1 2 3 4 ...

 1 2 3 3 4 ...

0 4 0 1 2 3 4 ...

 1 2 3 4 4 ...

 .

 .

 .

...

...

...

...

...

0 1 2 3 4

0

1 2 3 4

0

1

2 3 4

0

1

2

3 4

0

1

2

3

4

depth 4

226 CHAPTER 1 ■ Fundamentals

ptg

Again, suppose that we use quick-union for the dynamic connectivity problem and
wind up with a single component. An immediate implication of Proposition G is that
the running time is quadratic, in the worst case. Suppose that the input pairs come
in the order 0-1, then 0-2, then 0-3, and so forth. After N ! 1 such pairs, we have N
sites all in the same set, and the tree that is formed by the quick-union algorithm has
height N ! 1, with 0 linking to 1, which links to 2, which links to 3, and so forth (see
the diagram on the facing page). By Proposition G, the number of array accesses for
the union() operation for the pair 0 i is exactly 2i + 2 (site 0 is at depth i and site i at
depth 0). Thus, the total number of array accesses for the find() operations for these
N pairs is 2 (1 + 2 + . . . + N) ~N 2.

 Weighted quick-union. Fortunately, there is an
easy modification to quick-union that allows us
to guarantee that bad cases such as this one do
not occur. Rather than arbitrarily connecting the
second tree to the first for union(), we keep track
of the size of each tree and always connect the
smaller tree to the larger. This change requires
slightly more code and another array to hold the
node counts, as shown on page 228, but it leads to
substantial improvements in efficiency. We refer
to this algorithm as the weighted quick-union al-
gorithm. The forest of trees constructed by this
algorithm for tinyUF.txt is shown in the figure
at left on the top of page 229. Even for this small example, the tree height is substantially
smaller than the height for the unweighted version.

Weighted quick-union analysis. The figure at right on the top of page 229 illustrates
the worst case for weighted quick union, when the sizes of the trees to be merged by
union() are always equal (and a power
of 2). These tree structures look complex,
but they have the simple property that
the height of a tree of 2n nodes is n. Fur-
thermore, when we merge two trees of 2n

nodes, we get a tree of 2n"1 nodes, and we
increase the height of the tree to n"1. This
observation generalizes to provide a proof
that the weighted algorithm can guarantee
logarithmic performance.

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

Weighted quick-union

weighted

quick-union

always chooses the
better alternative

might put the
larger tree lower

% java WeightedQuickUnionUF < mediumUF.txt
528 503
548 523
...
3 components

% java WeightedQuickUnionUF < largeUF.txt
786321 134521
696834 98245
...
6 components

2271.5 ■ Case Study: Union-Find

ptg

 ALGORITHM 1.5 (continued) Union-find implementation (weighted quick-union)

public class WeightedQuickUnionUF
{
 private int[] id; // parent link (site indexed)
 private int[] sz; // size of component for roots (site indexed)
 private int count; // number of components

 public WeightedQuickUnionUF(int N)
 {
 count = N;
 id = new int[N];
 for (int i = 0; i < N; i++) id[i] = i;
 sz = new int[N];
 for (int i = 0; i < N; i++) sz[i] = 1;

 }

 public int count()
 { return count; }

 public boolean connected(int p, int q)
 { return find(p) == find(q); }

 private int find(int p)
 { // Follow links to find a root.
 while (p != id[p]) p = id[p];
 return p;
 }

 public void union(int p, int q)
 {
 int i = find(p);
 int j = find(q);
 if (i == j) return;

 // Make smaller root point to larger one.
 if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
 else { id[j] = i; sz[i] += sz[j]; }
 count--;
 }
}

This code is best understood in terms of the forest-of-trees representation described in the text. We
add a site-indexed array sz[] as an instance variable so that union() can link the root of the smaller
tree to the root of the larger tree. This addition makes it feasible to address large problems.

228 CHAPTER 2 ■ Fundamentals

ptg

Weighted quick-union traces (forests of trees)

reference input

p q

4 3

3 8

6 5

9 4

2 1

8 9

5 0

7 2

6 1

1 0

6 7

worst-case input

p q

0 1

2 3

4 5

6 7

0 2

4 6

0 4

Proposition H. The depth of any node in a forest built by weighted quick-union for
N sites is at most lg N.

Proof: We prove a stronger fact by (strong) induction: The height of every tree of
size k in the forest is at most lg k. The base case follows from the fact that the tree
height is 0 when k is 1. By the inductive hypothesis, assume that the tree height of a
tree of size i is at most lg i for all i < k. When we combine a tree of size i with a tree
of size j with i # j and i " j = k, we increase the depth of each node in the smaller set
by 1, but they are now in a tree of size i " j = k, so the property is preserved because
1+ lg i = lg(i " i) # lg(i " j) = lg k.

2291.5 ■ Case Study: Union-Find

ptg

Corollary. For weighted quick-union with N sites, the worst-case order of growth
of the cost of find(), connected(), and union() is log N.

Proof. Each operation does at most a constant number of array accesses for each
node on the path from a node to a root in the forest.

For dynamic connectivity, the practical implication of Proposition H and its corollary
is that weighted quick-union is the only one of the three algorithms that can feasibly
be used for huge practical problems. The weighted quick-union algorithm uses at most
c M lg N array accesses to process M connections among N sites for a small constant c.
This result is in stark contrast to our finding that quick-find always (and quick-union
sometimes) uses at least MN array accesses. Thus, with weighted quick-union, we can
guarantee that we can solve huge practical dynamic connectivity problems in a reason-
able amount of time. For the price of a few extra lines of code, we get a program that
can be millions of times faster than the simpler algorithms for the huge dynamic con-
nectivity problems that we might encounter in practical applications.

A 100-site example is shown on the top of this page. It is evident from this diagram
that relatively few nodes fall far from the root with weighted quick-union. Indeed it is
frequently the case that a 1-node tree is merged with a larger tree, which puts the node
just one link from the root. Empirical studies on huge problems tell us that weighted
quick-union typically solves practical problems in constant time per operation. We
could hardly expect to find a more efficient algorithm.

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average depth: 1.52

average depth: 5.11

230 CHAPTER 1 ■ Fundamentals

ptg

Optimal algorithms. Can we find an algorithm that has guaranteed constant-time-
per-operation performance? This question is an extremely difficult one that plagued
researchers for many years. In pursuit of an answer, a number of variations of quick-
union and weighted quick-union have been studied. For example, the following meth-
od, known as path compression, is easy to implement. Ideally, we would like every node
to link directly to the root of its tree, but we do not want to pay the price of changing a
large number of links, as we did in the quick-find algorithm. We can approach the ideal
simply by making all the nodes that we do examine directly link to the root. This step
seems drastic at first blush, but it is easy to implement, and there is nothing sacrosanct
about the structure of these trees: if we can modify them to make the algorithm more
efficient, we should do so. To implement path compression, we just add another loop to
find() that sets the id[] entry corresponding to each node encountered along the way
to link directly to the root. The net result is to flatten the trees almost completely, ap-
proximating the ideal achieved by the quick-find algorithm. The method is simple and
effective, but you are not likely to be able to discern any improvement over weighted
quick-union in a practical situation (see Exercise 1.5.24). Theoretical results about
the situation are extremely complicated and quite remarkable. Weighted quick union
with path compression is optimal but not quite constant-time per operation. That is, not
only is weighted quick-find with path compression not constant-time per operation
in the worst case (amortized), but also there exists no algorithm that can guarantee to
perform each union-find operation in amortized constant time (under the very general
“cell probe” model of computation). Weighted quick-union with path compression is
very close to the best that we can do for this problem.

algorithm
order of growth for N sites (worst case)

constructor union find

quick-find N N 1

quick-union N tree height tree height

weighted quick-union N lg N lg N

weighted quick-union with
 path compresson N

very, very nearly, but not quite 1 (amortized)
(see Exercise 1.5.13)

impossible N 1 1

 Performance characteristics of union-find algorithms

2311.5 ■ Case Study: Union-Find

ptg

Amortized cost plots. As with any data type implementation, it is worthwhile to run
experiments to test the validity of our performance hypotheses for typical clients, as dis-

cussion in Section 1.4. The figure at left shows
details of the performance of the algorithms for
our dynamic connectivity development client
when solving our 625-site connectivity example
(mediumUF.txt). Such diagrams are easy to pro-
duce (see Exercise 1.5.16): For the i th connec-
tion processed, we maintain a variable cost that
counts the number of array accesses (to id[] or
sz[]) and a variable total that is the sum of
the total number of array accesses so far. Then
we plot a gray dot at (i, cost) and a red dot
at (i, total/i). The red dots are the average
cost per operation, or amortized cost. These
plots provide good insights into algorithm be-
havior. For quick-find, every union() opera-
tion uses at least 625 accesses (plus 1 for each
component merged, up to another 625) and
every connected() operation uses 2 accesses.
Initially, most of the connections lead to a call
on union(), so the cumulative average hovers
around 625; later, most connections are calls to
connected() that cause the call to union() to
be skipped, so the cumulative average decreas-
es, but still remains relatively high. (Inputs that
lead to a large number of connected() calls that
cause union() to be skipped will exhibit signifi-
cantly better performance—see Exercise 1.5.23
for an example). For quick-union, all operations
initially require only a few array accesses; eventu-
ally, the height of the trees becomes a significant
factor and the amortized cost grows noticably.
For weighted quick-union, the tree height stays
small, none of the operations are expensive, and
the amortized cost is low. These experiments

validate our conclusion that weighted quick-union is certainly worth implementing
and that there is not much further room for improvement for practical problems.

Cost of all operations (625 sites)

quick-find

quick-union

weighted quick-union

0

0 900

1300

458

nu
m

be
r o

f a
rr

ay
 re

fe
re

nc
es

number of connections

0

100

0
20

one gray dot
for each connection
processed by client

red dots give
cumulative average

union() operations
use at least 625 references

connected() operations
use exactly 2 array accesses

find() operations
become expensive

no expensive operations

20

8

232 CHAPTER 1 ■ Fundamentals

ptg

Perspective Each of the UF implementations that we considered is an improvement
over the previous in some intuitive sense, but the process is artificially smooth because
we have the benefit of hindsight in looking over the development of the algorithms as
they were studied by researchers over the years. The implementations are simple and
the problem is well specified, so we can evaluate the various algorithms directly by run-
ning empirical studies. Furthermore, we can use these studies to validate mathematical
results that quantify the performance of these algorithms. When possible, we follow the
same basic steps for fundamental problems throughout the book that we have taken for
union–find algorithms in this section, some of which are highlighted in this list:

■ Decide on a complete and specific problem statement, including identifying
fundamental abstract operations that are intrinsic to the problem and an API.

■ Carefully develop a succinct implementation for a straightforward algorithm,
using a well-thought-out development client and realistic input data.

■ Know when an implementation could not possibly be used to solve problems on
the scale contemplated and must be improved or abandoned.

■

Develop improved implementations through a process of stepwise refinement,
validating the efficacy of ideas for improvement through empirical analysis,
mathematical analysis, or both.

■ Find high-level abstract representations of data structures or algorithms in op-
eration that enable effective high-level design of improved versions.

■ Strive for worst-case performance guarantees when possible, but accept good
performance on typical data when available.

■

Know when to leave further improvements for detailed in-depth study to skilled
researchers and move on to the next problem.

The potential for spectacular performance improvements for practical problems such
as those that we saw for union–find makes algorithm design a compelling field of study.
What other design activities hold the potential to reap savings factors of millions or
billions, or more?

Developing an efficient algorithm is an intellectually satisfying activity that can have
direct practical payoff. As the dynamic connectivity problem indicates, a simply stated
problem can lead us to study numerous algorithms that are not only both useful and
interesting, but also intricate and challenging to understand. We shall encounter many
ingenious algorithms that have been developed over the years for a host of practical
problems. As the scope of applicability of computational solutions to scientific and
commercial problems widens, so also grows the importance of being able to use ef-
ficient algorithms to solve known problems and of being able to develop efficient solu-
tions to new problems.

2331.5 ■ Case Study: Union-Find

ptg

Q&A

Q. I’d like to add a delete() method to the API that allows clients to delete connec-
tions. Any advice on how to proceed?

A. No one has devised an algorithm as simple and efficient as the ones in this section
that can handle deletions. This theme recurs throughout this book. Several of the data
structures that we consider have the property that deleting something is much more
difficult than adding something.

Q. What is the cell-probe model?

A. A model of computation where we only count accesses to a random-access memory
large enough to hold the input and consider all other operations to be free.

234 CHAPTER 1 ■ Fundamentals

ptg

EXERCISES

1.5.1 Show the contents of the id[] array and the number of times the ar-
ray is accessed for each input pair when you use quick-find for the sequence
9-0 3-4 5-8 7-2 2-1 5-7 0-3 4-2.

1.5.2 Do Exercise 1.5.1, but use quick-union (page 224). In addition, draw the forest of
trees represented by the id[] array after each input pair is processed.

1.5.3 Do Exercise 1.5.1, but use weighted quick-union (page 228).

1.5.4 Show the contents of the sz[] and id[] arrays and the number of array accesses
for each input pair corresponding to the weighted quick-union examples in the text
(both the reference input and the worst-case input).

1.5.5 Estimate the minimum amount of time (in days) that would be required for
quick-find to solve a dynamic connectivity problem with 109 sites and 106 input pairs,
on a computer capable of executing 109 instructions per second. Assume that each itera-
tion of the inner for loop requires 10 machine instructions.

1.5.6 Repeat Exercise 1.5.5 for weighted quick-union.

1.5.7 Develop classes QuickUnionUF and QuickFindUF that implement quick-union
and quick-find, respectively.

1.5.8 Give a counterexample that shows why this intuitive implementation of union()
for quick-find is not correct:

public void union(int p, int q)
{
 if (connected(p, q)) return;

 // Rename p’s component to q’s name.
 for (int i = 0; i < id.length; i++)
 if (id[i] == id[p]) id[i] = id[q];
 count--;
}

1.5.9 Draw the tree corresponding to the id[] array depicted at
right. Can this be the result of running weighted quick-union?
Explain why this is impossible or give a sequence of operations
that results in this array.

i 0 1 2 3 4 5 6 7 8 9

id[i] 1 1 3 1 5 6 1 3 4 5

2351.5 ■ Case Study: Union-Find

ptg

1.5.10 In the weighted quick-union algorithm, suppose that we set id[find(p)] to q
instead of to id[find(q)]. Would the resulting algorithm be correct?

Answer : Yes, but it would increase the tree height, so the performance guarantee would
be invalid.

1.5.11 Implement weighted quick-find, where you always change the id[] entries of
the smaller component to the identifier of the larger component. How does this change
affect performance?

EXERCISES (continued)

236 CHAPTER 1 ■ Fundamentals

ptg

CREATIVE PROBLEMS

1.5.12 Quick-union with path compression. Modify quick-union (page 224) to include
path compression, by adding a loop to union() that links every site on the paths from
p and q to the roots of their trees to the root of the new tree. Give a sequence of input
pairs that causes this method to produce a path of length 4. Note : The amortized cost
per operation for this algorithm is known to be logarithmic.

1.5.13 Weighted quick-union with path compression. Modify weighted quick-union
(Algorithm 1.5) to implement path compression, as described in Exercise 1.5.12.
Give a sequence of input pairs that causes this method to produce a tree of height 4.
Note : The amortized cost per operation for this algorithm is known to be bounded by a
function known as the inverse Ackermann function and is less than 5 for any conceivable
practical value of N.

1.5.14 Weighted quick-union by height. Develop a UF implementation that uses the
same basic strategy as weighted quick-union but keeps track of tree height and always
links the shorter tree to the taller one. Prove a logarithmic upper bound on the height
of the trees for N sites with your algorithm.

1.5.15 Binomial trees. Show that the number of nodes at each level in the worst-case
trees for weighted quick-union are binomial coefficients. Compute the average depth of
a node in a worst-case tree with N = 2n nodes.

1.5.16 Amortized costs plots. Instrument your implementations from Exercise 1.5.7
to make amortized costs plots like those in the text.

1.5.17 Random connections. Develop a UF client ErdosRenyi that takes an integer
value N from the command line, generates random pairs of integers between 0 and N-1,
calling connected() to determine if they are connected and then union() if not (as in
our development client), looping until all sites are connected, and printing the number
of connections generated. Package your program as a static method count() that takes
N as argument and returns the number of connections and a main() that takes N from
the command line, calls count(), and prints the returned value.

1.5.18 Random grid generator. Write a program RandomGrid that takes an int value
N from the command line, generates all the connections in an N-by-N grid, puts them
in random order, randomly orients them (so that p q and q p are equally likely to oc-
cur), and prints the result to standard output. To randomly order the connections, use
a RandomBag (see Exercise 1.3.34 on page 167). To encapsulate p and q in a single object,

2371.5 ■ Case Study: Union-Find

ptg

use the Connection nested class shown below. Package your program as two static
methods: generate(), which takes N as argument and returns an array of connec-
tions, and main(), which takes N from the command line, calls generate(), and iterates
through the returned array to print the connections.

1.5.19 Animation. Write a RandomGrid client (see Exercise 1.5.18) that uses
UnionFind as in our development client to check connectivity and uses StdDraw to
draw the connections as they are processed.

1.5.20 Dynamic growth. Using linked lists or a resizing array, develop a weighted
quick-union implementation that removes the restriction on needing the number of
objects ahead of time. Add a method newSite() to the API, which returns an int
identifier.

private class Connection
{
 int p;
 int q;

 public Connection(int p, int q)
 { this.p = p; this.q = q; }
}

Record to encapsulate connections

CREATIVE PROBLEMS (continued)

238 CHAPTER 1 ■ Fundamentals

ptg

EXPERIMENTS

1.5.21 Erdös-Renyi model. Use your client from Exercise 1.5.17 to test the hypothesis
that the number of pairs generated to get one component is ~ ½N ln N.

1.5.22 Doubling test for Erdös-Renyi model. Develop a performance-testing client that
takes an int value T from the command line and performs T trials of the following ex-
periment: Use your client from Exercise 1.5.17 to generate random connections, using
UnionFind to determine connectivity as in our development client, looping until all
sites are connected. For each N, print the value of N, the average number of connections
processed, and the ratio of the running time to the previous. Use your program to vali-
date the hypotheses in the text that the running times for quick-find and quick-union
are quadratic and weighted quick-union is near-linear.

1.5.23 Compare quick-find with quick-union for Erdös-Renyi model. Develop a perfor-
mance-testing client that takes an int value T from the command line and performs
T trials of the following experiment: Use your client from Exercise 1.5.17 to generate
random connections. Save the connections, so that you can use both quick-union and
quick-find to determine connectivity as in our development client, looping until all
sites are connected. For each N, print the value of N and the ratio of the two running
times.

1.5.24 Fast algorithms for Erdös-Renyi model. Add weighted quick-union and weight-
ed quick-union with path compression to your tests from Exercise 1.5.23 . Can you
discern a difference between these two algorithms?

1.5.25 Doubling test for random grids. Develop a performance-testing client that takes
an int value T from the command line and performs T trials of the following experie-
ment: Use your client from Exercise 1.5.18 to generate the connections in an N-by-N
square grid, randomly oriented and in random order, then use UnionFind to determine
connectivity as in our development client, looping until all sites are connected. For each
N, print the value of N, the average number of connections processed, and the ratio of
the running time to the previous. Use your program to validate the hypotheses in the
text that the running times for quick-find and quick-union are quadratic and weighted
quick-union is near-linear. Note : As N doubles, the number of sites in the grid increases
by a factor of 4, so expect a doubling factor of 16 for quadratic and 4 for linear.

2391.5 ■ Case Study: Union-Find

ptg

1.5.26 Amortized plot for Erdös-Renyi. Develop a client that takes an int value N from
the command line and does an amortized plot of the cost of all operations in the style
of the plots in the text for the process of generating random pairs of integers between 0
and N-1, calling connected() to determine if they are connected and then union() if
not (as in our development client), looping until all sites are connected.

EXPERIMENTS (continued)

240 CHAPTER 1 ■ Fundamentals

