Shortest Paths

- Shortest Paths
- Properties of Shortest Paths
- Dijkstra's Algorithm
- Shortest Paths on DAGs

Philip Bille
Shortest Paths

• Shortest Paths
• Properties of Shortest Paths
• Dijkstra's Algorithm
• Shortest Paths on DAGs
Shortest Paths

- **Shortest paths.** Given a directed, weighted graph G and vertex s, find shortest path from s to all vertices in G.
Shortest Paths

- **Shortest paths.** Given a directed, weighted graph G and vertex s, find shortest path from s to all vertices in G.
- **Shortest path tree.** Represent shortest paths in a tree from s.
Applications

- Routing, scheduling, pipelining, ...
Shortest Paths

• Shortest Paths
• Properties of Shortest Paths
• Dijkstra's Algorithm
• Shortest Paths on DAGs
Properties of Shortest Paths

• Assume for simplicity:
 • All vertices are reachable from s.
 • \implies a (shortest) path to each vertex always exists.
Properties of Shortest Paths

- **Subpath property.** Any subpath of a shortest path is a shortest path.

- **Proof.**
 - Consider shortest path from s to t consisting of p_1, p_2 and p_3.
 - Assume q_2 is shorter than p_2.
 - \Rightarrow Then p_1, q_2 and p_3 is shorter than p.

Shortest Paths

• Shortest Paths
• Properties of Shortest Paths
• Dijkstra's Algorithm
• Shortest Paths on DAGs
Dijkstra's Algorithm

- **Goal.** Given a directed, weighted graph with non-negative weights and a vertex \(s \), compute shortest paths from \(s \) to all vertices.

- **Dijkstra's algorithm.**
 - Maintains distance estimate \(v.d \) for hver knude \(v = \) length of shortest known path from \(s \) to \(v \).
 - Updates distance estimates by relaxing edges.

\[
\text{RELAX}(u,v) \quad \text{if} \ (v.d > u.d + w(u,v)) \quad v.d = u.d + w(u,v)
\]
Dijkstra's Algorithm

- Initialize $s.d = 0$ and $v.d = \infty$ for all vertices $v \in V\{s\}$.
- Grow tree T from s.
- In each step, add vertex with smallest distance estimate to T.
- Relax all outgoing edges of v.
Dijkstra's Algorithm

- Initialize $s.d = 0$ and $v.d = \infty$ for all vertices $v \in V\{s\}$.
- Grow tree T from s.
- In each step, add vertex with smallest distance estimate to T.
- Relax all outgoing edges of v.

Exercise. Show execution of Dijkstra's algorithm from vertex 0.
Dijkstra's Algorithm

- **Lemma.** Dijkstra's algorithms computes shortest paths.
- **Proof.**
 - Consider some step after growing tree T and assume distances in T are correct.
 - Consider closest vertex u of s not in T.
 - Shortest path from s to u ends with an edge (v,u).
 - v is closer than u to s \Rightarrow v is in T. (u was closest not in T)
 - \Rightarrow shortest path to u is in T except last edge (u,v).
 - Dijkstra adds (u,v) to T \Rightarrow T is shortest path tree after n-1 steps.
Dijkstra's Algorithm

- **Implementation.** How do we implement Dijkstra's algorithm?
- **Challenge.** Find vertex with smallest distance estimate.
Dijkstra's Algorithm

- **Implementation.** Maintain vertices outside T in priority queue.
 - **Key** of vertex v = v.d.
 - In each step:
 - Find vertex u with smallest distance estimate = EXTRACT-MIN
 - Relax edges that u point to with DECREASE-KEY.
Dijkstra's Algorithm

\textbf{DIJKSTRA}(G, s)
 for all vertices \(v \in V \)
 \(v.d = \infty \)
 \(v.\pi = \text{null} \)
 \text{INSERT}(P, v)
 \text{DECREASE-KEY}(P, s, 0)
 while (\(P \neq \emptyset \))
 \(u = \text{EXTRACT-MIN}(P) \)
 for all \(v \) that \(u \) point to
 \(\text{RELAX}(u, v) \)

\textbf{RELAX}(u, v)
 if (\(v.d > u.d + w(u, v) \))
 \(v.d = u.d + w(u, v) \)
 \text{DECREASE-KEY}(P, v, v.d)
 \(v.\pi = u \)

- Time.
 - \(n \) \text{EXTRACT-MIN}
 - \(n \) \text{INSERT}
 - \(< m \) \text{DECREASE-KEY}
- Total time with min-heap. \(O(n \log n + n \log n + m \log n) = O(m \log n) \)
Dijkstra's Algorithm

- Priority queues and Dijkstra's algorithm. Complexity of Dijkstra's algorithm depend on priority queue.
 - n \textsc{insert}
 - n \textsc{extract-min}
 - < m \textsc{decrease-key}

<table>
<thead>
<tr>
<th>Priority queue</th>
<th>\textsc{insert}</th>
<th>\textsc{extract-min}</th>
<th>\textsc{decrease-key}</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(n^2)</td>
</tr>
<tr>
<td>binary heap</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(m \log n)</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>O(1)\dagger</td>
<td>O(log n)\dagger</td>
<td>O(1)\dagger</td>
<td>O(m + n \log n)</td>
</tr>
</tbody>
</table>

\dagger = amortized

- Greed. Dijkstra's algorithm is a greedy algorithm.
Edsger Wybe Dijkstra (1930-2002)

Contributions. Foundations for programming, distributed computation, program verifications, etc.

Quotes. “Object-oriented programming is an exceptionally bad idea which could only have originated in California.”

“The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence.”

“APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.”
Shortest Paths

• Shortest Paths
• Properties of Shortest Paths
• Dijkstra's Algorithm
• Shortest Paths on DAGs
Shortest Paths on DAGs

- **Challenge.** Is it computationally easier to find shortest paths on DAGs?
- **DAG shortest path algorithm.**
 - Process vertices in topological order.
 - For each vertex v, relax all edges from v.
- Also works for **negative** edge weights.
Shortest Paths on DAGs

- **Lemma.** Algorithm computes shortest paths in DAGs.

- **Proof.**
 - Consider some step after growing tree T and assume distances in T are correct.
 - Consider next vertex u of s not in T.
 - Any path to u consists vertices in $T \cup$ edge e to u.
 - Edge e is relaxed \Rightarrow distance to u is shortest.
Shortest Paths on DAGs

- **Implementation.**
 - Sort vertices in topological order.
 - Relax outgoing edges from each vertex.
- **Total time.** \(O(m + n) \).
Shortest Paths Variants

- **Vertices**
 - Single source.
 - Single source, single target.
 - All-pairs.

- **Edge weights.**
 - Non-negative.
 - Arbitrary.
 - Euclidean distances.

- **Cycles.**
 - No cycles
 - No negative cycles.
Shortest Paths

- Shortest Paths
- Properties of Shortest Paths
- Dijkstra's Algorithm
- Shortest Paths on DAGs