Directed graphs

- Introduction
- Representation
- Depth First Search / Breadth First Search
- Topological Sorting
- Strongly Connected Components
- Implicit Graphs

Un-directed graph example: Transport

Example: Streetmap – a graph?
Some streets are one-way. This is modelled by directed graphs.

Directed graph

Definition (Directed graph)
Set of vertices, pairwise joined by directed edges.

\[
\deg^+_6 = 4, \quad \deg^-_6 = 2
\]

Application: WWW

- **Vertex**: Web page. **Edge**: Hyperlink.
- **Webcrawling. Page rank.**

http://computationalculture.net/what_is_in_pagerank/
Application: Automata, regular expressions

- Vertex: State. Edge: Transition.
- This automaton accepts "aaab" if there is a path from vertex 1 to vertex 10 that matches the string "aaab".
- Regular expressions can be represented by automata.

Application: Dependencies

- Are there any cyclic dependencies? Can we avoid that the present subject depends on a future one?

Application: Garbage Collection

Directed Graphs

Lemma
\[\sum_{v \in V} \deg^-(v) = \sum_{v \in V} \deg^+(v) = m \]

Proof.

Every edge has exactly one head and one tail.

Algorithmic problems on directed graphs

- **Reachability.** Is there a path from \(s \) to \(t \)?
- **Shortest path.** What is the shortest path from \(s \) to \(t \)?
- **Directed cycle.** Does the graph contain a (directed) cycle?
- **Topological sort.** Can we arrange the vertices such that all the edges go the same direction?
- **Strong connectivity.** Is there a path from anywhere to anywhere else in the graph?
- **Transitive closure.** Every path in a graph is represented by an edge in the transitive closure of that graph.

Directed graphs

- Introduction
- Representation
- Depth First Search / Breadth First Search
- Topological Sorting
- Strongly Connected Components
- Implicit Graphs
Representation

- G is a directed graph with n vertices and m edges

Representation. We need the following operations:
- PointsTo(u,v): Does u point to v?
- Neighbours(v): Returns all the vertices that v points to.
 (Aka. all out-neighbours of v.)
- Insert(v,u): Add the edge (v,u) to G.
 (unless already present).

Adjacency matrix

Directed graph G with n vertices and m edges.
Adjacency matrix:
- $n \times n$ matrix A
 - $A[i,j] = 1$ when $i \rightarrow j$, else 0.
Space $O(n^2)$.
Time
PointsTo(u,v) $O(1)$ time.
Neighbours(v) $O(n)$ time.
Insert(v,u) $O(1)$ time.

Adjacency list

Directed graph G with n vertices and m edges.
Adjacency list:
- Array $A[0 \ldots n-1]$
- $A[i]$ contains a list of all vertices that i points to.
Space $O(n + \sum_{v \in V} \deg^+(v)) = O(n + m)$.
Time
PointsTo(u,v) $O(\deg^+(u))$ time.
Neighbours(v) $O(\deg^+(v))$ time.
Insert(v,u) $O(\deg^+(v))$ time.

<table>
<thead>
<tr>
<th>Data structure</th>
<th>PointsTo</th>
<th>Neighbours</th>
<th>Insert</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjacency matrix</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Adjacency list</td>
<td>$O(\deg^+(v))$</td>
<td>$O(\deg^+(v))$</td>
<td>$O(\deg^+(v))$</td>
<td>$O(n + m)$</td>
</tr>
</tbody>
</table>
Directed graphs

- Introduction
- Representation
- Depth First Search and Breadth First Search
- Topological Sort
- Strongly Connected Components
- Implicit Graphs

Depth First Search / Breadth First Search

Depth First Search
- Let all vertices be unmarked.
 - Visit \(s \).
- When visiting \(v \):
 - Mark \(v \),
 - Recursively visit the out-neighbours of \(v \).

Breadth First Search
- Let all vertices be unmarked.
- Mark \(s \), add \(s \) to queue \(Q \).
- While \(Q \) is not empty:
 - Dequeue \(v \) from \(Q \),
 - For all \(u \) such that \(v \) !\(u \)
 - Mark \(u \), add \(u \) to \(Q \).

Time \(O(n + m) \)

Directed graphs

- Introduction
- Representation
- Search
- Topological Sorting
- Strongly Connected Components
- Implicit Graphs

Topological Sorting and DAGs

DAG Directed Acyclic Graph. Does not contain a cycle.

Topological sorting. An ordering of the vertices on a horizontal line, such that all edges go left to right.

Algorithmic problems
- Determine whether the input graph \(G \) is a DAG.
- Return a topological sorting of the vertices (in the affirmative case).

Goal: Show \(G \) is a DAG \(\iff \) \(G \) has topological sorting.
Give an algorithm for solving both.
Lemma. \(G \) has a topological sorting \(\Rightarrow \) \(G \) is a DAG.

Proof. Assume \(G \) has a topological sorting.

If \(G \) is not a DAG, then it has a cycle, \(K = v_k \).

Let \(j \) be the vertex of \(K \) furthest to the right.

There is some edge \(j \rightarrow i \) in \(K \), and thus in \(G \).

But \(i \) is before \(j \) \(\Rightarrow \) not a topological sorting.

Topological Sorting and DAGs

Lemma. \(G \) is a DAG \(\Rightarrow \) \(G \) has a vertex \(v \) with \(\deg^- (v) = 0 \), that is, in-degree 0. No other vertex points to \(v \).

Proof. Assume every vertex \(v \) has in-degree \(\geq 1 \).

Walk backwards for \(n + 1 \) steps, starting at any vertex \(s \).

There are only \(n \) vertices in \(G \), so at least one vertex must have been visited twice; we have found a cycle. \(G \) is not a DAG.

Exercise

Come up with a strategy for finding a topological sorting of a given DAG.

Proof by induction over the number of vertices in \(G \).

- (Base Case) If the graph has only one vertex, it already sorted.
- (Induction Step)
 - Find a vertex \(v \) with \(\deg^- (v) = 0 \).
 - \(G - v \) is still a DAG. \(G - v \) has a topological sorting.
 - Place \(v \) furthest to the left, followed by the sorting of \(G - v \).

This is a valid topological sorting since no edges go into \(v \)!
Topological sorting – Implementation

Goal Efficient algorithm on the adjacency list representation.
Algorithm Based on the proof:
if $G = (\{v\}, \emptyset)$ then
 print v.
else
 find v with $\deg^-(v) = 0$
 print v
 TopSort($G - v$)
end if
Correctness Follows from the proof.
Time Repeat until all but one vertex is removed: n times.
 ▶ Find a vertex of in-degree 0 How much time for this?
 ▶ Remove it from the graph. Every edge is removed exactly once ⇒ Total time $O(m)$ on this step.

Topological sorting – Implementation 1 (not smart)

Solution 1 Construct the reversed graph G^R:
if $G = (\{v\}, \emptyset)$ then
 print v.
else
 find v with $\deg^-(v) = 0$
 print v
 TopSort($G - v$)
end if
Linear search in G^R to find a vertex of out-degree 0.
Time Repeat until all but one vertex is removed: n times.
 ▶ Find a vertex of in-degree 0 $O(n)$ time
 ▶ Remove it from the graph Every edge is removed exactly once ⇒ Total time $O(m)$ on this step.
Total $O(n^2 + m) = O(n^2)$.

Topological sorting – Implementation 2 (smart)

Solution 2 Maintain information about the indegrees of all vertices. Keep a linked list of vertices of degree 0.

\[
\begin{array}{c|c}
(v, \deg^-(v)) & 0 \quad 1 \quad 2 \quad 3 \quad 4 \\
\hline
0 & 0 \quad 1 \quad 1 \quad 1 \quad 1 \\
1 & 1 \quad 0 \quad 1 \quad 1 \quad 1 \\
2 & 1 \quad 1 \quad 0 \quad 1 \quad 1 \\
3 & 1 \quad 1 \quad 1 \quad 0 \quad 1 \\
4 & 1 \quad 1 \quad 1 \quad 1 \quad 0 \\
5 & 1 \quad 1 \quad 1 \quad 1 \quad 1 \\
6 & 1 \quad 1 \quad 1 \quad 1 \quad 1 \\
\end{array}
\]
Initialising $O(n + m)$ time.
Repeat until all but one vertex is removed: n times.
 ▶ Find a vertex of in-degree 0 $O(1)$ time
 ▶ Remove it from the graph Every edge is removed exactly once ⇒ Total time $O(m)$ on this step.
Total $O(n + m)$.

Topological Sorting and DAGs

Lemma
G is a DAG $\iff G$ has a topological sorting.

Theorem
There is an $O(n + m)$ time algorithm that determines whether G is a DAG, and, in the affirmative case outputs a topological sorting.
Topological Sorting via DFS

Idea:
- Run DFS on G
- When returning from the recursive call on vertex v, push v to a stack.
- Print stack.

Time $O(m + n)$

Intuition Recursively finds vertices of out-degree 0.

Directed graphs

- Introduction
- Representation
- Depth First Search / Breadth First Search
- Topological Sorting
- Strongly Connected Components
- Implicit Graphs

Strongly connected components

Definition (Strongly connected)
u and v are strongly connected if there is a path u to v, and a path v to u.

Definition (Strongly connected component)
Maximal subset of strongly connected vertices.

Strongly connected components via DFSes

Idea
- Run DFS on the reversed graph G^R. Note the finish times of all vertices.
- Run DFS on G, but when starting a new "round", always start on the unmarked vertex with the highest finish-time.
- Each round finds and marks a strongly connected component.

Correctness See Chapter 22.5 in CLRS

Time $O(n + m)$
Directed graphs

- Introduction
- Representation
- Depth First Search / Breadth First Search
- Topological Sorting
- Strongly Connected Components
- Implicit Graphs

Implicit Graph Representation

Implicit graph. Directed or undirected graph given by an implicit representation:
- initial vertex \(s \)
- algorithm for generating the neighbours of a vertex.

Applications Games, Artificial Intelligence, ...

Implicit Graph Example: Rubik’s Cube

Rubics Cube.
- \(n + m = 43.252.003.274.489.856.000 \approx 43\text{quintillion} \)

What is the fewest moves to get the “tidy” cube, regardless how jumbled it is when you start?

<table>
<thead>
<tr>
<th>Year</th>
<th>lower bound</th>
<th>upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>18</td>
<td>52</td>
</tr>
<tr>
<td>1990</td>
<td>18</td>
<td>42</td>
</tr>
<tr>
<td>1992</td>
<td>18</td>
<td>39</td>
</tr>
<tr>
<td>1992</td>
<td>18</td>
<td>37</td>
</tr>
<tr>
<td>1995</td>
<td>18</td>
<td>29</td>
</tr>
<tr>
<td>1995</td>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>2005</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>2006</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td>2007</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>2008</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>2008</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>2008</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>2010</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
Directed graphs

- Introduction
- Representation
- Depth First Search / Breadth First Search
- Topological Sorting
- Strongly Connected Components
- Implicit Graphs