Directed graphs

- Introduction
- Representation
- Depth First Search / Breadth First Search
- Topological Sorting
- Strongly Connected Components
- Implicit Graphs
Directed graphs

- Introduction
- Representation
- Depth First Search / Breadth First Search
- Topological Sorting
- Strongly Connected Components
- Implicit Graphs
Un-directed graph example: Transport
Example: Streetmap – a graph?
Example: Streetmap – a graph?
Example: Streetmap – a graph?

Some streets are one-way. This is modelled by directed graphs.
Directed graph

Definition (Directed graph)
Set of vertices, pairwise joined by directed edges.

\[
\text{deg}^+(6) = 4, \text{deg}^-(6) = 2
\]
Application: WWW

- Webcrawling. Page rank.

http://computationalculture.net/what_is_in_pagerank/
Application: Automata, regular expressions

- Vertex: State. Edge: Transition.
- This automaton accepts “aaab” ⇔ there is a path from vertex 1 to vertex 10 that matches the string “aaab”
- Regular expressions can be represented by automata.

\[R = a \cdot (a^*) \cdot (b|c) \]
Application: Dependencies

- Are there any cyclic dependencies? Can we avoid that the present subject depends on a future one?
Application: Garbage Collection

Applications

<table>
<thead>
<tr>
<th>graph</th>
<th>vertices</th>
<th>edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>internet</td>
<td>webpage</td>
<td>hyperlink</td>
</tr>
<tr>
<td>transport</td>
<td>intersection</td>
<td>oneway street</td>
</tr>
<tr>
<td>scheduling</td>
<td>job</td>
<td>precedence relation</td>
</tr>
<tr>
<td>infectious disease</td>
<td>person</td>
<td>disease transmission</td>
</tr>
<tr>
<td>citation network</td>
<td>article</td>
<td>citation</td>
</tr>
<tr>
<td>object graph</td>
<td>objects</td>
<td>pointers</td>
</tr>
<tr>
<td>object hierarchy</td>
<td>class</td>
<td>inheritance</td>
</tr>
</tbody>
</table>
Directed Graphs

Lemma
\[\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = m \]

Proof.
Every edge has exactly one head and one tail.
Algorithmic problems on directed graphs

Reachability. Is there a path from s to t?
Shortest path. What is the shortest path from s to t?
Directed cycle. Does the graph contain a (directed) cycle?
Topological sort. Can we arrange the vertices such that all the edges go the same direction?
Strong connectivity. Is there a path from anywhere to anywhere else in the graph?
Transitive closure. Every path in a graph is represented by an edge in the transitive closure of that graph.
Directed graphs

- Introduction
- Representation
- Depth First Search / Breadth First Search
- Topological Sorting
- Strongly Connected Components
- Implicit Graphs
- G is a directed graph with n vertices and m edges

Representation. We need the following operations:

- **PointsTo**(u,v): Does u point to v?
- **Neighbours**(v): Returns all the vertices that v points to. (Aka. all *out-neighbours* of v.)
- **Insert**(v,u): Add the edge (v, u) to G. (unless already present).
Directed graph G with n vertices and m edges.

Adjacency matrix:

- $n \times n$ matrix A
- $A[i,j] = 1$ when $i \rightarrow j$, else 0.

Space $O(n^2)$.

Time

- $\text{PointsTo}(u,v)$ \(O(1)\) time.
- $\text{Neighbours}(v)$ $O(n)$ time.
- $\text{Insert}(v,u)$ $O(1)$ time.
Adjacency list

Directed graph G with n vertices and m edges.

Adjacency list:

- Array $A[0 \ldots n-1]$
- $A[i]$ contains a list of all vertices that i points to.

Space

$O(n + \sum_{v \in V} \deg^+(v)) = O(n + m)$.

Time

- $\text{PointsTo}(u, v) \ O(\deg^+(u))$ time.
- $\text{Neighbours}(v) \ O(\deg^+(v))$ time.
- $\text{Insert}(v, u) \ O(\deg^+(v))$ time.
Representation

<table>
<thead>
<tr>
<th>Data structure</th>
<th>PointsTo</th>
<th>Neighbours</th>
<th>Insert</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjacency matrix</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Adjacency list</td>
<td>$O(\text{deg}^+(v))$</td>
<td>$O(\text{deg}^+(v))$</td>
<td>$O(\text{deg}^+(v))$</td>
<td>$O(n + m)$</td>
</tr>
</tbody>
</table>

Directed graphs

- Introduction
- Representation
- Depth First Search and Breadth First Search
- Topological Sort
- Strongly Connected Components
- Implicit Graphs
Depth First Search / Breadth First Search

Depth First Search

- Let all vertices be unmarked.
 Visit s.
- When visiting v:
 - Mark v,
 - Recursively visit the out-neighbours of v.

Breadth First Search

- Let all vertices be unmarked.
- Mark s, add s to queue Q.
- While Q is not empty:
 - Dequeue v from Q,
 - For all u such that $v \rightarrow u$
 - Mark u, add u to Q.

Time $O(n + m)$
Directed graphs

- Introduction
- Representation
- Search
- Topological Sorting
- Strongly Connected Components
- Implicit Graphs
Topological Sorting and DAGs

DAG Directed Acyclic Graph. Does not contain a cycle.

Topological sorting. An ordering of the vertices on a horizontal line, such that all edges go left to right.

Algorithmic problems

- Determine whether the input graph G is a DAG.
- Return a topological sorting of the vertices (in the affirmative case).

Goal: Show G is a DAG $\iff G$ has topological sorting.

Give an algorithm for solving both.
Lemma \(G \) has a topological sorting \(\Rightarrow \) \(G \) is a DAG.
Proof. Assume \(G \) has a topological sorting.

If \(G \) is not a DAG, then it has a cycle, \(K = v_{k_0} \).
Let \(j \) be the vertex of \(K \) furthest to the right.
There is some edge \(j \rightarrow i \) in \(K \), and thus in \(G \).
But \(i \) is before \(j \) \(\Rightarrow \) not a topological sorting.
Come up with a strategy for finding a topological sorting of a given DAG.
Lemma. \(G \) is a DAG \(\Rightarrow \) \(G \) has a vertex \(v \) with \(\deg^- (v) = 0 \), that is, in-degree 0. No other vertex points to \(v \).

Proof. Assume every vertex \(v \) has in-degree \(\geq 1 \). Walk backwards for \(n + 1 \) steps, starting at any vertex \(s \). There are only \(n \) vertices in \(G \), so at least one vertex must have been visited twice; we have found a cycle. \(G \) is not a DAG.
Lemma \(G \) is a DAG \(\Rightarrow \) \(G \) admits a topological sorting

Proof by induction over the number of vertices in \(G \).

- (Base Case) If the graph has only one vertex, it already sorted.
- (Induction Step)
 - Find a vertex \(v \) with \(\text{deg}^{-}(v) = 0 \).
 - \(G - v \) is still a DAG. \(G - v \) has a topological sorting.
 - Place \(v \) furthest to the left, followed by the sorting of \(G - v \).
 This is a valid topological sorting since no edges go into \(v \)!
Topological sorting – Implementation

Goal Efficient algorithm on the adjacency list representation.

Algorithm Based on the proof:

```plaintext
if G = ({v}, ∅) then
    print v.
else
    find v with deg^−(v) = 0
    print v
    TopSort(G − v)
end if
```

Correctness Follows from the proof.

Time Repeat until all but one vertex is removed: \(n \) times.

- Find a vertex of in-degree 0 How much time for this?
- Remove it from the graph. Every edge is removed exactly once ⇒ Total time \(O(m) \) on this step.
Topological sorting – Implementation 1 (not smart)

Solution 1 Construct the reversed graph G^R:

\[
\begin{align*}
\text{if } G &= (\{v\}, \emptyset) \text{ then} \\
& \quad \text{print } v.
\end{align*}
\]

\[
\begin{align*}
\text{else} \\
& \quad \text{find } v \text{ with } \deg^-(v) = 0 \\
& \quad \text{print } v \\
& \quad \text{TopSort}(G - v)
\end{align*}
\]

end if

Linear search in G^R to find a vertex of out-degree 0.

Time Repeat until all but one vertex is removed: n times.

- Find a vertex of in-degree 0 $O(n)$ time
- Remove it from the graph Every edge is removed exactly once ⇒ Total time $O(m)$ on this step.

Total $O(n^2 + m) = O(n^2)$.
Solution 2 Maintain information about the indegrees of all vertices. Keep a linked list of vertices of degree 0.

Initialising $O(n + m)$ time.

Repeat until all but one vertex is removed: n times.

- Find a vertex of in-degree 0 $O(1)$ time
- Remove it from the graph Every edge is removed exactly once \Rightarrow Total time $O(m)$ on this step.

Total $O(n + m)$.

$(v, \deg^{-}(v))$ table

<table>
<thead>
<tr>
<th>v</th>
<th>$\deg^{-}(v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

0-deg$^{-}$ list

0 \rightarrow 6
Lemma

G is a DAG $\iff G$ has a topological sorting.

Theorem

There is an $O(n + m)$ time algorithm that determines whether G is a DAG, and, in the affirmative case outputs a topological sorting.
Topological Sorting via DFS

Idea:

- Run DFS on G
- When returning from the recursive call on vertex v, push v to a stack.
- Print stack.

Time $O(m + n)$

Intuition Recursively finds vertices of out-degree 0.
Directed graphs

- Introduction
- Representation
- Depth First Search / Breadth First Search
- Topological Sorting
- Strongly Connected Components
- Implicit Graphs
Strongly connected components

Definition (Strongly connected)

\(u\) and \(v\) are *strongly connected* if there is a path \(u\) to \(v\), and a path \(v\) to \(u\).

Definition (Strongly connected component)

Maximal subset of strongly connected vertices.
Strongly connected components via DFSes

Idea

- Run DFS on the reversed graph G^R. Note the finish times of all vertices.
- Run DFS on G, but when starting a new “round”, always start on the unmarked vertex with the highest finish-time.
- Each round finds and marks a strongly connected component.

Correctness See Chapter 22.5 in CLRS

Time $O(n + m)$
Directed graphs

- Introduction
- Representation
- Depth First Search / Breadth First Search
- Topological Sorting
- Strongly Connected Components
- Implicit Graphs
Implicit Graph Representation

Implicit graph. Directed or undirected graph given by an implicit representation:

- initial vertex s
- algorithm for generating the neighbours of a vertex.

Applications Games, Artificial Intelligence, . . .
Rubik’s Cube.

\[n + m = 43,252,003,274,489,856,000 \approx 43 \text{quintillion} \]

What is the fewest moves to get the “tidy” cube, regardless how jumbled it is when you start?
Implicit Graph Example: Rubik’s Cube

<table>
<thead>
<tr>
<th>Year</th>
<th>lower bound</th>
<th>upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>18</td>
<td>52</td>
</tr>
<tr>
<td>1990</td>
<td>18</td>
<td>42</td>
</tr>
<tr>
<td>1992</td>
<td>18</td>
<td>39</td>
</tr>
<tr>
<td>1992</td>
<td>18</td>
<td>37</td>
</tr>
<tr>
<td>1995</td>
<td>18</td>
<td>29</td>
</tr>
<tr>
<td>1995</td>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>2005</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>2006</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td>2007</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>2008</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>2008</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>2008</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>2010</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
Directed graphs

- Introduction
- Representation
- Depth First Search / Breadth First Search
- Topological Sorting
- Strongly Connected Components
- Implicit Graphs