Introduction to graphs

+ Undirected graphs
* Representation
+ Depth first search
+ Connected components
+ Breadth first search
* Bipartite graphs

Introduction to graphs

+ Undirected graphs

Undirected graphs

« Undirected graph. Set of vertices (da: knuder) pairwise joined by edges (da: kanter).

vertex —» ° Edge

S
c‘§° :\‘g

* Why graphs?
* Models many problems from different areas.
» Thousands of practical applications.

* Hundreds of well-known graph algorithms.

Visualisation of the internet

London Metro

Visualisation of friendships on Facebook

facebook

"Visualizing friendships”, Paul Butler
London metro, London Transport

Protein interactions Examples of applications of graphs
Graph Vertices Edges
communication computers, routers, etc. cables
transport intersections roads
transport airports flight routes
games position valid move
. neural networks neuron Synapses
financial network stocks or currencies transactions
circuits logical gates connections
food chain species predator-prey
molecule atom bindings

Terminology

« Undirected graph. G = (V, E)
+ V = set of vertices
« E = set of edges (each edge is a pair of vertices)
s n=|V|,m=|E|
« Path (da: sti). Sequence of vertices connected by edges.
« Cycle (da: kreds). (Nonempty) path starting and ending at the same vertex.
« Degree (da: grad). deg(v) = the number of neighbours of v, ore dges incident to v.

« Connectivity (da: sammenheeng). A pair of vertices are connected if there is a path
between them

V=1{0,12,...12}
E ={(0,1), 0,2) (0,4),2,3)...., (11,12)}

e n=13,m=15

Cycle

Undirected graphs
. Lemma. Zvev deg(v) =2m.

+ Proof. How many times is each edge counted in this sum?

B &0 o

an :\‘:

Algoritmic problems on graphs

« Path. Is there a path connecting s and t?
« Shortest path. What is the shortest path connecting s and t?

+ Longest path. What is the longest simple (ie. not self-intersecting) path connecting s
and t?

« Cycle. Is there a cycle in the graph?
« Euler tour. Is there a cycle that uses each edge exactly once?
« Hamilton cycle. Is there a cycle that visits each vertex exactly once?

« Connectivity. Is any pair of vertices connectable by a path?
« Minimum spanning tree. What is the cheapest way of connecting all vertices?

 Biconnectivity. Is there a vertex whose removal would cause the graph to be
disconnected?

+ Planarity. Is it possible to draw the graph in the plane without edge crossings?

« Graph isomorphism. Do these sets of vertices and edges represent the same graph?

Introduction to graphs

» Representation

Representation

« G graph with n vertices and m edges.
« Representation. We need the following operations on graphs.
* ADJACENT(v, u): determine whether u and v are neighbours.
» NEIGHBOURS(V): return all neighbours of v.
+ INSERT(v, u): add the edge (v, u) to G (unless it is already there).

B, & o o

Adjacency matrix representation

Adjacency list representation

« Graph G with n vertices and m edges.

« Adjacency list (da: incidensliste). ‘
+ Tabel A[0..n-1].
« A[i] contains a list of all neighbours to e

)

+ Complexity?

. Space. O(n + XVEV deg(v)) = O(n + m) 0
« Time. ; —
+ ADJACENT, NEIGHBOURS, INSERT s
O(deg(v)) time. A
5[]
6 |
7[_—le]
s|_[—lel
9
10] 9]
1 [l
12 [9]

Jry
N

—
o
[y
ry

i

=
o
=]
"
nN

/L

0
» Graph G with n vertices and m edges. : AN
» Adjacency matrix (incidensmatrix). a e ° ° a
» 2D n x n table A.
- Ali,jl = 1if i and j er neighbours, 0 otherwise e e‘@
- Complexity? » \
p y 4 e Q
+ Space. O(n?)
0 12 3 456 7 89 101112
+ Time. ofo]1]1]of1[o]o]ofofo]o]o]o
+ ADJACENT O(1) time 1f1]ofofo]ofo]ofo]ofo]o]o]o
+ NEIGHBOURS(v) O(n) time. 2f1101011/0J*1]10]10f0f0]0]0]0
3 111
* INSERT(v, u) O(1) time. SEEUL RN S 0101010101910
411)ojo]1]o]1]o]o]ojo]ofo]o
5/oJof1]1]1]oJojo]ojo]ofo]o
6loJojo]ojo]ojo]1]1]o]ofo]o
7]lo)ojo]ojo]o]1]o]o]o]ofo]o
gloJojoJofo]o[1]o]o]o]o]o]o
9loJofo]o]o]o]ojo]ofo]1|1]1
10)ojojojofoJofo]ofo]1]o]o]H
11]oJojojofojofojofol1fo]ofr
12)ojojojofojofo]ofo]1|1]1]o
Repraesentation
Datastruktur ADJACENT NEIGHBOURS INSERT Plads
adjacency matrix o(1) O(n) O(1) O(n2?)
adjacency list O(deg(v)) O(deg(v)) O(deg(v)) O(n+m)

+ Real world graphs are often sparse.

Introduction to graphs

+ Depth first search
+ Connected Components

Depth first search

+ Algorithm for systematically visiting all vertices and edges.
+ Depth first search (dybde-forst) from vertex s.
« Initially, all vertices un-marked, and visit vertex s. ©
+ Visit vertex v:
+ Mark v.

« Visit all unmarked neighbours of v recursively.

« Intuition.
+ Explore out from s in some direction, until coming to a “dead end”.
+ Go back to the last place where there were unexplored edges. Repeat.

+ Discovery time (starttid). First time a vertex is visited.

+ Finish time (sluttid). Last time a vertex is visited.

Depth first search

« Exercise. Run DFS (depth first search) from vertex 0, and report discovery time and
finish time for each vertex. Assume the adjacency lists are sorted.

Depth first search

DFS(s)
time = 0
DFS-vIsIT(s) s

DFS-vISIT(V)
v.d = time++
marker v
foreach unmarked neighbour u
DFS-visiTCu)
u.m=v
v.f = time++

+ Time. (assuming the graph is given in adjacency list representation)
+ Recursion? once per vertex.
+ O(deg(v)) time spent on vertex v.
. = total O(n + Zvev deg(v)) = O(n + m) time.

+ Only visits vertices connected to s.

Flood fill

« Flood fill (farveudfyldning). Chance the colour of a connected area of green pixels.

‘@0 Tux Paint
Tools)
fAL)
e, e e 0 00 0 o
P o o o o o
-
Roomg Y o o o o o
”m
e o o e 0o o
e 0o 0000 0
bf_\% S)
= B

Glck i he pctre 1 il hat area withcolor
« Algorithm.
+ Build a grid graph and run DFS (depth first search).
« Vertex: pixel.
+ Edge: goes between neighbouring pixels of same colour.
« Area: all vertices connected to a given vertex.

Connected components

+ Definition. A connected component (sammenhaengskomponent) is a maximal subset
of connected vertices.

» How does one find all connected components?
+ Algorithm.
« Initially, let all vertices be unmarked.
+ While there is an unmarked vertex:
» Chose an unmarked vertex v, run DFS from v.
» Time. O(n + m).

Introduction to graphs

» Breadth first search

Breadth first search

+ Breadth first search (breddeferst sagning) from s.
+ Initially, let all vertices be unmarked.
+ Mark s, and add s to the queue K. S
» While K is not empty:
+ Excerpt vertex v from K.
+ For all unmarked neighbours u of v
« Mark u.
+ Adduto K.

* Intuition.
+ Explore, starting from s, in all directions - in increasing distance from s.

» Shortest paths from s.
+ Distance to s in BFS tree = shortest distance to s in the original graph.

Breadth first search

+ Exercise. Run BFS from vertex 0 and indicate the shortest paths. Assume the
adjacency lists are sorted.

Shortest paths

» Lemma. BFS finds the length of the shortest path from s to all other vertices.

« Intuition.

» BFS assigns vertices to layers. Layer number i contains all vertices of distance i
tos. L+ L2
Lo

Ls
+ What does each layer contain?
+ Lo:{s}
+ L1 all neighbours of Lo.
+ L2: all neighbours if L1 that are not neighbours of Lo
+ Ls: all neighbours of L2 that neither are neighbours of Lo nor L.

SN

&)

-

i- all neighbours til Li-1 not neighbouring L;for j < i-1

= all vertices of distance i from s.

Breadth first search

BFS(s)
mark s
s.d=20 s
K. ENQUEUE(S)
repeat until K is empty

v = K.DEQUEUEQ)
foreach unmarked neighbour u

mark u
u.d=v.d +1
u.m=v

K. ENQUEUECU)

« Time. (@assuming adjacency list representation)
+ Each vertex is visited at most once.
+ O(deg(v)) time spent on vertex v.
. = total O(n + ZVEV deg(v)) = O(n + m) time.

» Only vertices connected to s are visited.

Introduction to graphs

» Bipartite graphs

Bipartite graphs
« Definition. A graph is bipartite (todelt) if and only if all vertices can be coloured red

and blue such that every edge has exactly one red and one blue endpoint.

« Alternativt definition. A graph is bipartite if and only if its vertices can be partitioned
into two sets V1 and V2 such that all edges go between V¢ and Vo.

+ Application.
+ Scheduling, matching, assigning customers to servers, assigning jobs to
machines, assigning students to advisors/labs, ...

+ Many graph problems are easier on bipartite graphs.

Bipartite graphs

» Challenge. Given a graph G, determine whether G is bipartite.

Bipartite graphs
« Lemma. A graph G is bipartite if and only if all cycles in G have even length.

« Proof. =

+ If G is bipartite, all cycles start and end in the same side.

Bipartite graphs
» Lemma. A graph G is bipartite if and only if all cycles in G have even length.
. Proof. <
+ Choose a vertex v and consider BFS layers Lo, L, ..., Lk.
- All cycles have even length = There is no edge between vertices of the same

layer => We can assign alternating (red, blue) colours to the layers = G is
bipartite.

Bipartite graphs

* Algorithm. L Lo
» Run BFS on G. Lo

« For every edge of G, determine
whether it goes between vertices of Ls
the same layer.

« Time.
« O(n+m)

Graph algorithms

Algorithm Time Space
Depth first search O(n + m) O(n + m)
Breadth first search O(n + m) O(n + m)
Connected components O(n + m) O(n + m)
Bipartite O(n + m) O(n + m)

+ All running times assume that G is given in the adjacency list representation.

Introduction to graphs

* Undirected graphs
* Representation
* Depth first search
+ Connected components
+ Breadth first search
* Bipartite graphs

