Binary Search Trees

- Nearest Neighbor
- Binary Search Trees
- Insertion
- Predecessor and Successor
- Deletion
- Algorithms on Trees

Philip Bille

Nearest Neighbor

- Nearest neighbor. Maintain dynamic set S supporting the following operations. Each element has key $x.key$ and satellite data $x.data$.
- $\text{PREDECESSOR}(k)$: return element with largest key $\leq k$.
- $\text{SUCCESSOR}(k)$: return element with smallest key $\geq k$.
- $\text{INSERT}(x)$: add x to S (we assume x is not already in S)
- $\text{DELETE}(x)$: remove x from S.

3 5 6 10 12 20 24

$\text{PREDECESSOR}(8) \quad k = 8 \quad \text{SUCCESSOR}(8)$

Nearest Neighbor

- Applications.
 - Searching for similar data (typically multidimensional)
 - Routing on the internet.

- Challenge. How can we solve problem with current techniques?
Nearest Neighbor

1. **Solution 1:** linked list. Maintain S in a doubly-linked list.
 - **PREDECESSOR**(k): linear search for largest key $\leq k$.
 - **SUCCESSOR**(k): linear search for smallest key $\geq k$.
 - **INSERT**(x): insert x in the front of list.
 - **DELETE**(x): remove x from list.

 - **Time.**
 - **PREDECESSOR** and **SUCCESSOR** in $O(n)$ time ($n = |S|$).
 - **INSERT** and **DELETE** in $O(1)$ time.
 - **Space.**
 - $O(n)$.

2. **Solution 2:** Sorted array. Maintain S in a sorted array.

 - **PREDECESSOR**(k): binary search for largest key $\leq k$.
 - **SUCCESSOR**(k): binary search for smallest key $\geq k$.
 - **INSERT**(x): build new array of size +1 with x inserted.
 - **DELETE**(x): build new array of size -1 with x removed.

 - **Time.**
 - **PREDECESSOR** and **SUCCESSOR** in $O(\log n)$ time.
 - **INSERT** and **DELETE** in $O(n)$ time.
 - **Space.**
 - $O(n)$.

Data structure comparison

<table>
<thead>
<tr>
<th>Data structure</th>
<th>PREDECESSOR</th>
<th>SUCCESSOR</th>
<th>INSERT</th>
<th>DELETE</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>linked list</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>sorted array</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

- **Challenge.** Can we do significantly better?
Binary tree. Rooted tree, where each internal vertex has a left child and/or a right child.

Binary search tree. Binary tree that satisfies the search tree property.

Search tree property.
- Each vertex stores an element.
- For each vertex v:
 - all vertices in left subtree are \(\leq v.\text{key} \).
 - all vertices in right subtree are \(\geq v.\text{key} \).

Binary Search Trees

- Nearest Neighbor
- Binary Search Trees
- Insertion
- Predecessor and Successor
- Deletion
- Algorithms on Trees

Insertion

- \textsc{Insert}(x): start in root. At vertex \(v \):
 - if \(x.\text{key} \leq v.\text{key} \) go left.
 - if \(x.\text{key} > v.\text{key} \) go right.
 - if null, insert \(x \)
Insertion

- **INSERT(x)**: start in root. At vertex v:
 - if x.key ≤ v.key go left.
 - if x.key > v.key go right.
 - if null, insert x

- **Exercise.** Insert following sequence in binary search tree: 6, 14, 3, 8, 12, 9, 34, 1, 7

Binary Search Trees

- Nearest Neighbor
- Binary Search Trees
- Insertion
- **Predecessor and Successor**
- Deletion
- Algorithms on Trees

Insertion

```
INSERT(x, v)
if (v == null) return x
if (x.key ≤ v.key)
    v.left = INSERT(x, v.left)
if (x.key > v.key)
    v.right = INSERT(x, v.right)
```

- **Time.** $O(h)$

Predecessor

- **PREDECESSOR(k)**: start in root. At vertex v:
 - if v == null: return null.
 - if k == v.key: return v.
 - if k < v.key: go left.
 - if k > v.key: search in right subtree.
 - If element x with key ≤ k in right subtree return x.
 - Otherwise, return v

Predecessor

\[
\text{PREDECESSOR}(v, k) =
\begin{cases}
\text{null} & \text{if } v = \text{null} \\
\text{v} & \text{if } v.\text{key} = k \\
\text{PREDECESSOR}(v.\text{left}, k) & \text{if } k < v.\text{key} \\
\text{PREDECESSOR}(v.\text{right}, k) & \text{if } k \geq v.\text{key}
\end{cases}
\]

- **Time.** $O(h)$
- **SUCCESSOR** with similar algorithm in $O(h)$ time.

Deletion

\[
\text{DELETE}(x):
\begin{cases}
0 \text{ children: remove } x. \\
1 \text{ child: } \text{splice } x. \\
2 \text{ children: find } y = \text{vertex with smallest key }> x.\text{key}. \text{Splice } y \text{ and replace } x \text{ by } y.
\end{cases}
\]

- **Time.** $O(h)$

Binary Search Trees

- Nearest Neighbor
- Binary Search Trees
- Insertion
- Predecessor and Successor
- Deletion
- Algorithms on Trees
Nearest Neighbor

<table>
<thead>
<tr>
<th>Data structure</th>
<th>PREDECESSOR</th>
<th>SUCCESSOR</th>
<th>INSERT</th>
<th>DELETE</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>linked list</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(n)</td>
</tr>
<tr>
<td>sorted array</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>binary search tree</td>
<td>O(h)</td>
<td>O(h)</td>
<td>O(h)</td>
<td>O(h)</td>
<td>O(n)</td>
</tr>
<tr>
<td>balanced binary search</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

- **Height**: Depends on sequence of operations.
 - \(h = \Omega(n) \) worst-case and \(h = \Theta(\log n) \) on average.
- **Balanced binary search trees**.
 - Possible to efficiently maintain binary search with height \(O(\log n) \) (2-3 tree, AVL-trees, red-black trees, ..)
 - Even better bounds possible with advanced data structures.

Binary Search Trees

- **Nearest neighbor**
 - PREDECESSOR\((k) \): return element with largest key \(\leq k \).
 - SUCCESSOR\((k) \): return element with smallest key \(\geq k \).
 - INSERT\((x) \): add \(x \) to \(S \) (we assume \(x \) is not already in \(S \))
 - DELETE\((x) \): remove \(x \) from \(S \).
- **Other operations on binary search trees**.
 - SEARCH\((k) \): determine if element with key \(k \) is in \(S \) and return it if so.
 - TREE-SEARCH\((x, k) \): determine if element with key \(k \) is in subtree rooted at \(x \) and return it if so.
 - TREE-MIN\((x) \): return the smallest element in subtree rooted at \(x \).
 - TREE-MAX\((x) \): return the largest element in subtree rooted at \(x \).
 - TREE-PREDECESSOR\((x) \): return element with largest key \(\leq x.key \).
 - TREE-SUCCESSOR\((x) \): returner element with smallest key \(\geq x.key \).

Algorithms on Trees

- **Previous algorithms**.
 - Heaps (MAX, EXTRACT-MAX, INCREASE-KEY, INSERT, ..)
 - Union find (INIT, UNION, FIND, ..)
 - Binary search trees (PREDECESSOR, SUCCESSOR, INSERT, DELETE, ..)
- **Challenge**: How do we design algorithms on binary trees?
Algorithms on Trees

- **Recursion on binary trees.**
 - Solve problem on $T(v)$:
 - Solve problem recursively on $T(v \text{.left})$ and $T(v \text{.right})$.
 - Combine to get solution for $T(v)$.

Tree Traversals

- **Inorder traversal.**
 - Visit left subtree recursively.
 - Visit vertex.
 - Visit right subtree recursively.
 - Prints out the vertices in a binary search tree in sorted order.

- **Preorder traversal.**
 - Visit vertex.
 - Visit left subtree recursively.
 - Visit right subtree recursively.

- **Postorder traversal.**
 - Visit left subtree recursively.
 - Visit right subtree recursively.
 - Visit vertex.

Example. Compute $\text{size}(v)$ (= number of vertices in $T(v)$).
- If v is empty: $\text{size}(v) = 0$
- Otherwise: $\text{size}(v) = \text{size}(v\text{.left}) + \text{size}(v\text{.right}) + 1$.

Time. $O(\text{size}(v))$

Inorder traversal

```java
INORDER(v)
    if (v == null) return
    INORDER(v.left)
    print v.key
    INORDER(v.right)
```

Preorder traversal

```java
PREORDER(v)
    if (v == null) return
    print v.key
    PREORDER(v.left)
    PREORDER(v.right)
```

Postorder traversal

```java
POSTORDER(v)
    if (v == null) return
    POSTORDER(v.left)
    POSTORDER(v.right)
    print v.key
```

Time. $O(n)$
Binary Search Trees

- Nearest Neighbor
- Binary Search Trees
- Insertion
- Predecessor and Successor
- Deletion
- Algorithms on Trees