Binary Search Trees

- Nearest Neighbor
- Binary Search Trees
- Insertion
- Predecessor and Successor
- Deletion
- Algorithms on Trees
Binary Search Trees

- Nearest Neighbor
- Binary Search Trees
- Insertion
- Predecessor and Successor
- Deletion
- Algorithms on Trees
Nearest Neighbor

- **Nearest neighbor.** Maintain dynamic set S supporting the following operations. Each element has key $x\.key$ and satellite data $x\.data$.
 - **PREDECESSOR**(k): return element with largest key $\leq k$.
 - **SUCCESSOR**(k): return element with smallest key $\geq k$.
 - **INSERT**(x): add x to S (we assume x is not already in S)
 - **DELETE**(x): remove x from S.
Nearest Neighbor

- **Applications.**
 - Searching for similar data (typically multidimensional)
 - Routing on the internet.

- **Challenge.** How can we solve problem with current techniques?
Nearest Neighbor

- **Solution 1: linked list.** Maintain S in a doubly-linked list.

 ![Linked List Diagram]

 - PREDECESSOR\((k)\): linear search for largest key \(\leq k\).
 - SUCCESSOR\((k)\): linear for smallest key \(\geq k\).
 - INSERT\((x)\): insert \(x\) in the front of list.
 - DELETE\((x)\): remove \(x\) from list.

- **Time.**
 - PREDECESSOR and SUCCESSOR in \(O(n)\) time \((n = |S|)\).
 - INSERT and DELETE in \(O(1)\) time.

- **Space.**
 - \(O(n)\).
Nearest Neighbor

• **Solution 2: Sorted array.** Maintain S in a sorted array.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>16</td>
<td>41</td>
<td>54</td>
<td>66</td>
<td>96</td>
<td></td>
</tr>
</tbody>
</table>

• **PREDECESSOR(k):** binary search for largest key $\leq k$.
• **SUCCESSOR(k):** binary search for smallest key $\geq k$.
• **INSERT(x):** build new array of size +1 with x inserted.
• **DELETE(x):** build new array of size -1 with x removed.

• **Time.**
 • **PREDECESSOR** and **SUCCESSOR** in $O(\log n)$ time.
 • **INSERT** and **DELETE** in $O(n)$ time.

• **Space.**
 • $O(n)$.
Nearest Neighbor

<table>
<thead>
<tr>
<th>Data structure</th>
<th>PREDECESSOR</th>
<th>SUCCESSOR</th>
<th>INSERT</th>
<th>DELETE</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>linked list</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(n)</td>
</tr>
<tr>
<td>sorted array</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

- **Challenge.** Can we do significantly better?
Binary Search Trees

- Nearest Neighbor
- Binary Search Trees
- Insertion
- Predecessor and Successor
- Deletion
- Algorithms on Trees
Binary Search Trees

• **Binary tree.** Rooted tree, where each internal vertex has a left child and/or a right child.

• **Binary search tree.** Binary tree that satisfies the search tree property.

• **Search tree property.**
 • Each vertex stores an element.
 • For each vertex v:
 • all vertices in left subtree are ≤ v.key.
 • all vertices in right subtree are ≥ v.key.
Binary Search Trees

- **Representation.** Each vertex x stores
 - x.key
 - x.left
 - x.right
 - x.parent
 - $(x$.data$)$
- **Space.** $O(n)$
Binary Search Trees

• Nearest Neighbor
• Binary Search Trees
• Insertion
• Predecessor and Successor
• Deletion
• Algorithms on Trees
Insertion

- **INSERT(x):** start in root. At vertex v:
 - if x.key ≤ v.key go left.
 - if x.key > v.key go right.
 - if null, insert x
Insertion

• **INSERT(x):** start in root. At vertex v:
 • if x.key ≤ v.key go left.
 • if x.key > v.key go right.
 • if null, insert x

• **Exercise.** Insert following sequence in binary search tree: 6, 14, 3, 8, 12, 9, 34, 1, 7
Insertion

\[
\text{\textsc{insert}}(x, v)
\]
\[
\begin{align*}
\text{if (v == null) return } x \\
\text{if (x.key } \leq \text{ v.key)} \\
\quad v.\text{left} &= \text{\textsc{insert}}(x, v.\text{left}) \\
\text{if (x.key } > \text{ v.key)} \\
\quad v.\text{right} &= \text{\textsc{insert}}(x, v.\text{right})
\end{align*}
\]

- **Time.** $O(h)$
Binary Search Trees

• Nearest Neighbor
• Binary Search Trees
• Insertion
• Predecessor and Successor
• Deletion
• Algorithms on Trees
Predecessor

- **PREDECESSOR(k):** start in root. At vertex v:
 - if v == null: return null.
 - if k == v.key: return v.
 - if k < v.key: go left.
 - if k > v.key: search in right subtree.
 - If element x with key ≤ k in right subtree return x.
 - Otherwise, return v
Predecessor

PREDECESSOR(v, k)

1. if (v == null) return null
2. if (v.key == k) return v
3. if (k < v.key)
 - return **PREDECESSOR**(v.left, k)
4. t = **PREDECESSOR**(v.right, k)
5. if (t ≠ null) return t
6. else return v

- **Time.** O(h)
- **SUCCESSOR** with similar algorithm in O(h) time.
Binary Search Trees

• Nearest Neighbor
• Binary Search Trees
• Insertion
• Predecessor and Successor
• Deletion
• Algorithms on Trees
Deletion

• \textbf{DELETE}(x):
 • 0 children: remove x.
 • 1 child: \textit{splice} x.
 • 2 children: find y = vertex with smallest key > x.key. Splice y and replace x by y.
Deletion

- **DELETE**(x):
 - 0 children: remove x.
 - 1 child: **splice** x.
 - 2 children: find y = vertex with smallest key > x.key. Splice y and replace x by y.

- **Time.** O(h)
Nearest Neighbor

<table>
<thead>
<tr>
<th>Data structure</th>
<th>PREDECESSOR</th>
<th>SUCCESSOR</th>
<th>INSERT</th>
<th>DELETE</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>linked list</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(n)</td>
</tr>
<tr>
<td>sorted array</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>binary search tree</td>
<td>O(h)</td>
<td>O(h)</td>
<td>O(h)</td>
<td>O(h)</td>
<td>O(n)</td>
</tr>
<tr>
<td>balanced binary search tree</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

- **Height.** Depends on sequence of operations.
 - \(h = \Omega(n) \) worst-case and \(h = \Theta(\log n) \) on average.

- **Balanced binary search trees.**
 - Possible to efficiently maintain binary search with height \(O(\log n) \) (2-3 tree, AVL-trees, red-black trees, ..)
 - Even better bounds possible with advanced data structures.
Binary Search Trees

• Nearest neighbor
 • \textsc{Predecessor}(k): return element with largest key \leq k.
 • \textsc{Successor}(k): return element with smallest key \geq k.
 • \textsc{Insert}(x): add x to S (we assume x is not already in S)
 • \textsc{Delete}(x): remove x from S.

• Other operations on binary search trees.
 • \textsc{Search}(k): determine if element with key k is in S and return it if so.
 • \textsc{Tree-Search}(x, k): determine if element with key k is in subtree rooted at x and return it if so.
 • \textsc{Tree-Min}(x): return the smallest element in subtree rooted at x.
 • \textsc{Tree-Max}(x): return the largest element in subtree rooted at x.
 • \textsc{Tree-Predecessor}(x): return element with largest key \leq x.key.
 • \textsc{Tree-Successor}(x): returner element with smallest key \geq x.key.
Binary Search Trees

- Nearest Neighbor
- Binary Search Trees
- Insertion
- Predecessor and Successor
- Deletion
- Algorithms on Trees
Algorithms on Trees

- Previous algorithms.
 - Heaps (MAX, EXTRACT-MAX, INCREASE-KEY, INSERT, …)
 - Union find (INIT, UNION, FIND, …)
 - Binary search trees (PREDECESSOR, SUCCESSOR, INSERT, DELETE, …)
- Challenge. How do we design algorithms on binary trees?
Algorithms on Trees

- Recursion on binary trees.
 - Solve problem on $T(v)$:
 - Solve problem recursively on $T(v.\text{left})$ and $T(v.\text{right})$.
 - Combine to get solution for $T(v)$.
Example. Compute size(v) (= number of vertices in T(v)).

- If v is empty: size(v) = 0
- Otherwise: size(v) = size(v.left) + size(v.right) + 1.

\[
\text{SIZE}(v) \\
\quad \text{if } (v == \text{null}) \text{ return } 0 \\
\quad \text{else return SIZE}(v.\text{left}) + \text{SIZE}(v.\text{right}) + 1
\]

Time. O(size(v))
Tree Traversals

- **Inorder traversal.**
 - Visit left subtree recursively.
 - Visit vertex.
 - Visit right subtree recursively.
 - Prints out the vertices in a binary search tree in sorted order.

- **Preorder traversal.**
 - Visit vertex.
 - Visit left subtree recursively.
 - Visit right subtree recursively.

- **Postorder traversal.**
 - Visit left subtree recursively.
 - Visit right subtree recursively.
 - Visit vertex.

Inorder: 1, 3, 8, 11, 13, 14, 15, 20
Preorder: 15, 8, 1, 3, 14, 11, 13, 20
Postorder: 3, 1, 13, 11, 14, 8, 20, 15
Tree Traversals

INORDER(v)
if (v == null) return
INORDER(v.left)
print v.key
INORDER(v.right)

PREORDER(v)
if (v == null) return
print v.key
PREORDER(v.left)
PREORDER(v.right)

POSTORDER(v)
if (v == null) return
POSTORDER(v.left)
POSTORDER(v.right)
print v.key

- **Time.** $O(n)$

The tree and its traversals are shown:

- **Inorder:** 1, 3, 8, 11, 13, 14, 15, 20
- **Preorder:** 15, 8, 1, 3, 14, 11, 13, 20
- **Postorder:** 3, 1, 13, 11, 14, 8, 20, 15
Binary Search Trees

• Nearest Neighbor
• Binary Search Trees
• Insertion
• Predecessor and Successor
• Deletion
• Algorithms on Trees