Weekplan: Binary Search Trees
The 02105+02326 DTU Algorithms Team

Reading

Exercises

1 Simulation and Properties
1.1 Which of the following trees are binary search trees?

```
(a) 16
    12 20
    2 11 18 21
  8

(b) 9
    7 18
    2 8 13 17
  50

(c) 16
    17 10
    2 15 13 11
  10
```

1.2 Where are the elements with respectively the smallest and largest key located in a binary search tree?

1.3 CLRS 12.1-1.

1.4 Specify the pre-order, in-order og post-order sequence of keys for the tree in (b)

1.5 CLRS 12.1-2.

1.6 CLRS 12.1-3. Write pseudo code for the algorithm.

1.7 CLRS 12.2-1.

1.8 [BSc] CLRS 12.2-5. *Hint:* prove by contradiction.

2 Leaves and Heights
Let T be a binary tree with n nodes and root v.

2.1 Give a recursive algorithm that given v computes the number of leafs in T. Write pseudo code for your solution.

2.2 Give a recursive algorithm that given v computes the height of T. Write pseudo code for your solution.

2.3 [*] Implement your solution to compute the height.

3 More Recursion on Trees
Solve exercise 4 in the exam set from 2011.

4 Traversal of Binary Search Trees
4.1 Give an algorithm that given a binary search tree T with a key in each node, determines if T satisfies the binary search tree property.

4.2 Give an algorithm that given a binary search tree T constructs a reversed binary search tree T^R. T^R should be a binary search tree with the same keys as T. For each node v in T^R the nodes in the left subtree must be $\geq v$ and the keys in the right subtree must be $\leq v$.

4.3 [*] Give an algorithm that given two binary search trees T_1 and T_2 constructs a single binary search tree with all the elements from both T_1 and T_2.

5 Perfectly Balanced Binary Search Trees Let A be a sorted array of $n = 2^{h+1} − 1$ distinct numbers. Give a sequence of insertions of the numbers in A into a binary search tree T such that T becomes a complete binary search tree of height h.

6 Pre-Order Traversal [†] Implement a recursive algorithm for pre-order traversal of a binary tree.

7 Even More Recursion on Trees Solve exercise 4 in the exam set from 2010.