Hashing

- Dictionaries
- Hashing with chaining
- Hash functions
- Linear Probing
Hashing

- Dictionaries
- Hashing with chaining
- Hash functions
- Linear Probing
Dictionaries

Dictionary: Maintain a dynamic set S. Every element x has a key $x.key$ from a universe U, along with satellite data $x.data$.

Operations:

- **search(k)** determine whether an element x with $x.key = k$ exists, and return it.
- **insert(x)** add x to the set S.
- **delete(x)** remove x from the set S.

[Diagram of a set S with elements U, Anchor, Tree, Hamster, Knife, Lever, and Mallet.]

- insert(Hamster)
- search(Tree)
- search(Mallet)
Dictionaries

Applications
- Basic data structure for representing a set
- Used in many algorithms and data structures

Challenge How can we solve the dictionary problem using current techniques?
Dictionaries - solution with a chained list - too slow!

Time:
- \(\text{search}(k) - O(|S|)\) time (search through all elements)
- \(\text{insert}(x) - O(1)\) time (insert at head of list)
- \(\text{delete}(x) - O(1)\) time to change pointers.

Space: \(O(|S|)\) space.
Dictionaries - solution with an array - too large!

- A is an array of size U
- Save x on the position $A[x.key]$ in A.

- $\text{search}(k)$ - $O(1)$ time to return $A[k]$
- $\text{insert}(x)$ - $O(1)$ time to set $A[x.key] = x$
- $\text{delete}(x)$ - $O(1)$ time to set $A[x.key] = \text{null}$.

Space: $O(|U|)$

Exercise: When is this a problem?
Dictionaries - two dissatisfactory solutions

<table>
<thead>
<tr>
<th>Data structure</th>
<th>Search</th>
<th>Insert</th>
<th>Delete</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chained list</td>
<td>$O(</td>
<td>S</td>
<td>)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Array</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(</td>
</tr>
</tbody>
</table>

Challenge: Can we do better?
Hashing

- Dictionaries
- Hashing with chaining
- Hash functions
- Linear Probing
Hashing with chaining

Idea: Use a hash function $h : U \rightarrow \{0, \ldots, m\}$ where $m = O(|S|)$.

- Maintain an array A of size m,
- Each entry of the array points to a chained list,
- The element x is stored somewhere in the chained list at $A[h(x.key)]$.

Collision: When $m < |U|$, then even when $x.key \neq y.key$, we risk $h(x.key) = h(y.key)$. We call this a collision.

We want h such that there are few collisions.

Hash (vb tr) “to confuse, muddle, or mess up”.
Hashing with chaining

How it works.

- **insert(учитывающий)**
 \(h(учитывающий) = 0 \)

- **insert(лопатка)**
 \(h(лопатка) = 7 \)

- **search(🐿)**
 \(h(🐿) = 15 \)

- **search(🦊)**
 \(h(🦊) = 2 \)
Hashing with chaining

How it works.

search(k) - search through $A[k]$ ’s list for k.
insert(x) - insert x in $A[h(x.key)]$ ’s list.
delete(x) - delete x from list.

Time:

search(k) - $O(|\text{list’s length}|)$ time
insert(x) - $O(1)$ time (at head of list)
delete(x) - $O(1)$ time to change pointers.

Plus the time it takes to calculate $h(x.key)$

Space:

$O(m + |S|) = O(|S|)$
Hashing with chaining - Exercise

Insert the following keys K in a hash table of size 9 using hashing with chaining using the hash function

$$h(k) = k \mod 9$$

$K = 5, 28, 19, 15, 20, 33, 12, 17, 10$

How long is the longest list?
Imagine there’s a uniform hash function $h : U \rightarrow \{0, \ldots, m - 1\}$.
Uniform hashing

Definition (Load factor)

\[\alpha = \frac{|S|}{m}. \] The average length of lists.

\[m = \Theta(|S|) \Rightarrow \alpha = \Theta(1). \]

Dream world: Imagine there’s a hash function \(h \) that is

- computable in \(O(1) \) time, and
- For any \(x \in U: h(x) \) is independent uniformly random in \(\{0, \ldots, m-1\} \).

Then:

- Expected length of list = \(\alpha \).
- \(\Rightarrow \) search(\(k \)) in \(O(\alpha) = O(1) \) time.
- Search, Insert, Delete: \(O(1) \) time.
- \(O(|S|) \) space.
Dictionaries - two dissatisfactory and one imaginary

<table>
<thead>
<tr>
<th>Data structure</th>
<th>Search</th>
<th>Insert</th>
<th>Delete</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chained list</td>
<td>$O(</td>
<td>S</td>
<td>)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Array</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(</td>
</tr>
<tr>
<td>Hashing with chaining</td>
<td>$O(1)^\dagger$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(</td>
</tr>
</tbody>
</table>

†: Expected running time. Assuming uniform hashing.

Challenge: Find a real-life hash function that works.
Hashing

- Dictionaries
- Hashing with chaining
- Hash functions
- Linear Probing
Universal hashing

Goal: Avoid collisions \(h(y) = h(x) \) for \(x \neq y \).
If \(h(x) \) and \(h(y) \) are independent uniform random, then

\[
\Pr [h(x) = h(y)] = 1/m
\]

Definition (Universal hashfunction)

\(h \) is universal if for any \(x, y \in U \) with \(x \neq y \),
\[
\Pr [h(x) = h(y)] \leq 1/m
\]

If \(h \) is universal, what is the expected size of the list at \(A[h(x)] \)?

\[
\sum_{y \in S} \Pr [h(y) = h(x)] \leq 1 + \sum_{y \in S\setminus\{x\}} \frac{1}{m} \leq 1 + \frac{|S|}{m} = O(1)
\]

All operations in (expected) \(O(1) \) time!
Hash function: multiply-mod-prime

\[p \text{ is a prime } > |U|. \]

\[h_{a,b}(x) = (((ax + b) \mod p) \mod m) \]

- Select \(a \in \{1, \ldots, m-1\} \) and \(b \in \{0, \ldots, m-1\} \) independently uniformly at random.
- Use \(h(x) = h_{a,b}(x) = \pi(\tilde{h}_{a,b}(x)) \) as hash function.
- \(\tilde{h}_{a,b} \) is collision free because \(a \neq 0 \)
- \(\pi \) introduces collisions when \(m < p \)
- Given \(x \neq y \), then \(\Pr[h(x) = h(y)] < \frac{1}{m} \)
Hash function: multiply-shift

Assume $|U|$ and m are powers of 2.
E.g $|U| = 2^w = 2^{64}$ and $m = 2^L$.

\[
\begin{array}{c|c|c|c}
ax & w-1 & w-L & 0 \\
\hline
(a*x)>>w-L
\end{array}
\]

- Select odd $a \in \{1, 3, 5, \ldots, |U| - 1\}$
- $h_a(x) = \lfloor (ax \mod 2^w) / 2^{w-L} \rfloor$
- Implementation: return $(a*x)>>64(64-L)$;
- $\Pr[h_a(x) = h_a(y)] \leq \frac{2}{m}$
Hashing

- Dictionaries
- Hashing with chaining
- Hash functions
- Linear Probing
Analogies

Chaining: Like a desk of drawers. Must linear-search through drawer no. 8 to find 🐭

Linear Probing: Like a shelf. No space for 🔨 at $h(sacrificer) = 7$, So insert 🔨 at the nearest vacant spot to the right.
Linear probing

- Maintain an array of size m
- **Idea**: Save x in $A[x.key]$
- **Challenge**: Collisions.
Linear probing

- Maintain an array of size m
- A *cluster* is a sequence of consecutive non-empty positions.
- Store x in $A[x.key]$, or somewhere in the cluster containing $x.key$, to the right of $x.key$.

Example:
- Insert(โย). $h(โย) = 8$.
- Delete(仓). $h(仓) = 7$, $h(🔨) = 7$.
- Search(🔮). $h(🔮) = 2$.

Space: $m = O(|S|)$. **Time:** $O(|\text{cluster}|)$. ← $O(1)$ for some hash functions h.
Linear Probing

Huge advantage: Linear Probing is cache efficient.

![Graph showing comparison between Chaining and Linear Probing]

http://en.wikipedia.org/wiki/Hash_table
Hashing

- Dictionaries
- Hashing with chaining
- Hash functions
- Linear Probing