Priority Queues

- Priority Queues
- Trees and Heaps
- Representations of Heaps
- Algorithms on Heaps
- Building a Heap
- Heapsort

Philip Bille

Priority Queues

- Priority Queues
- Trees and Heaps
- Representations of Heaps
- Algorithms on Heaps
- Building a Heap
- Heapsort

Applications.

- Scheduling
- Shortest paths in graphs (Dijkstra's algorithm)
- Minimum spanning trees in graphs (Prim's algorithm)
- Compression (Huffman's algorithm)
- ...

Challenge. How can we solve problem with current techniques?
Priority Queues

• Solution 1: Linked list. Maintain S in a doubly-linked list.

 \[7 \rightarrow 42 \rightarrow 18 \rightarrow 23 \rightarrow 5 \rightarrow 10 \rightarrow 56 \rightarrow 2 \]

 • `MAX()`: linear search for largest key.
 • `EXTRACTMAX()`: linear search for largest key. Remove and return element.
 • `INCREASEKEY(x, k)`: set x.key = k.
 • `INSERT(x)`: add element to front of list (assume element does not exist in S beforehand).

• Time.
 • `MAX` and `EXTRACTMAX` in O(n) time (n = |S|).
 • `INCREASEKEY` and `INSERT` in O(1) time.

• Space.
 • O(n).

Priority Queues

• Solution 2: Sorted linked list. Maintain S in a sorted doubly-linked list.

 \[56 \rightarrow 42 \rightarrow 23 \rightarrow 18 \rightarrow 10 \rightarrow 7 \rightarrow 5 \rightarrow 2 \]

 • `MAX()`: return first element.
 • `EXTRACTMAX()`: return and remove first element.
 • `INCREASEKEY(x, k)`: set x.key = k. Linear search to move x to correct position.
 • `INSERT(x)`: linear search to insert x at correct position.

• Time.
 • `MAX` and `EXTRACTMAX` in O(1) time.
 • `INCREASEKEY` and `INSERT` in O(n) time.

• Space.
 • O(n).

Priority Queues

- Challenge. Can we do significantly better?

<table>
<thead>
<tr>
<th>Data structure</th>
<th>Max</th>
<th>EXTRACTMAX</th>
<th>INCREASEKEY</th>
<th>INSERT</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>linked list</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(n)</td>
</tr>
<tr>
<td>sorted linked list</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

Priority Queues

• Trees and Heaps
 - Representations of Heaps
 - Algorithms on Heaps
 - Building a Heap
 - Heapsort
Trees

- Rooted trees.
 - Nodes (or vertices) connected with edges.
 - Connected and acyclic.
 - Designated root node.
 - Special type of graph.

- Terminology.
 - Children, parent, descendant, ancestor, leaves, internal nodes, path,..

- Depth and height.
 - Depth of \(v \) = length of path from \(v \) to root.
 - Height of \(v \) = length of path from \(v \) to descendant leaf.
 - Depth of \(T \) = height of \(T \) = length of longest path from root to a leaf.

Trees

- Binary tree.
 - Rooted tree.
 - Each node has at most two children called the left child and right child.

- Complete binary tree. Binary tree where all levels of tree are full.
- Almost complete binary tree. Complete binary tree with 0 or more rightmost leaves deleted.

- Lemma. Height of an (almost) complete binary tree with \(n \) nodes is \(\Theta(\log n) \).
 - Pf. See exercises.

Heaps

- Heaps. Almost complete binary tree that satisfies heap-order.

- Heap-order.
 - All nodes store one element.
 - For all nodes \(v \).
 - all keys in left subtree and right subtree are \(\leq v.key \).

- Max-heap vs min-heap.

Priority Queues

- Priority Queues
- Trees and Heaps
- Representations of Heaps
 - Algorithms on Heaps
 - Building a Heap
 - Heapsort
Heap

- Data structure. We need the following navigation operations on a heap.
 - PARENT(x): return parent of x.
 - LEFT(x): return left child of x.
 - RIGHT(x): return right child of x.

- Challenge. How can we represent a heap compactly to support fast navigation?

Heap

- Linked representation. Each node stores
 - v.key
 - v.parent
 - v.left
 - v.right
 - PARENT, LEFT, RIGHT by following pointer.

- Time. O(1)
- Space. O(n)

Heap

- Array representation.
 - Array H[0..n]
 - H[0] unused
 - H[1..n] stores nodes in level order.

 - PARENT(x): return ⌈x/2⌉
 - LEFT(x): return 2x.
 - RIGHT(x): return 2x + 1

- Time. O(1)
- Space. O(n)

Priority Queues

- Priority Queues
- Trees and Heaps
- Representations of Heaps
- Algorithms on Heaps
- Building a Heap
- Heapsort
Algorithms on Heaps

- **BubbleUp(x):**
 - If heap order is violated at node x because key is larger than key at parent:
 - Swap x and parent
 - Repeat with parent until heap order is satisfied.

- **BubbleDown(x):**
 - If heap order is violated at node x because key is smaller than key at left or right child:
 - Swap x and child c with largest key.
 - Repeat with child until heap order is satisfied.

Priority Queues

- **Max()**
 - return H[1]

- **ExtractMax()**
 - r = H[1]
 - H[1] = H[n]
 - n = n - 1
 - BubbleDown(1)
 - return r

- **Insert(x)**
 - n = n + 1
 - H[n] = x
 - BubbleUp(n)

- **IncreaseKey(x, k)**
 - H[x] = k
 - BubbleUp(x)

- **Ex.** Trace execution of following sequence in initially empty heap: 2, 5, 7, 6, 4, E, E
- Numbers mean Insert og E is ExtractMax. Draw heap after each operation.

Time.
- **BubbleUp** and **BubbleDown** in $\Theta(\log n)$ time.
- How can we use them to implement a priority queue?
Heaps with array data structure is an example of an implicit data structure.

Priority Queues

<table>
<thead>
<tr>
<th>Data structure</th>
<th>MAX</th>
<th>EXTRACTMAX</th>
<th>INCREASE KEY</th>
<th>INSERT</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>linked list</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>sorted linked list</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>heap</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

- Heaps with array data structure is an example of an implicit data structure.

Priority Queues

- Priority Queues
- Trees and Heaps
- Representations of Heaps
- Algorithms on Heaps
- Building a Heap
- Heapsort

Prioritetskøer

- Prioritetskøer
- Træer og hobe
- Repræsentation af hobe
- Algoritmer på hobe
- Hobkonstruktion
- Hobsortering

Building a Heap

- **Building a heap.** Given n integers in an array $H[0..n]$, convert array to a heap.
Building a Heap

- **Solution 1: top-down construction**
 - For all nodes in increasing level order apply BUBBLEUP.

 ![Diagram of a binary tree with arrows indicating BUBBLEUP process]

- **Time.**
 - For each node of depth d, we use $O(d)$ time.
 - 1 node of depth 0, 2 nodes of depth 1, 4 nodes of depth 2, ..., $\sim n/2$ nodes of depth $\log n$.
 - \Rightarrow total time is $\Theta(n \log n)$
- **Challenge.** Can we do better?

Building a Heap

- **Solution 2: bottom-up construction**
 - For all nodes in decreasing level order apply BUBBLEDOWN.

 ![Diagram of a binary tree with arrows indicating BUBBLEDOWN process]

- **Time.**
 - For each node of height h we use $O(h)$ time.
 - 1 node of height $\log n$, 2 nodes of height $\log n - 1$, ..., $n/4$ nodes of height 1, $n/2$ nodes of height 0.
 - \Rightarrow total time is $\Theta(n)$ (see exercise)

Priority Queues

- Priority Queues
- Trees and Heaps
- Representations of Heaps
- Algorithms on Heaps
- Building a Heap
- Heapsort

Heapsort

- **Sorting.** How can we sort an array $H[1..n]$ using a heap?
- **Solution.**
 - Build a heap for H.
 - Apply n EXTRACTMAX.
 - Insert results in the end of array.
 - Return H.

 ![Diagram of a binary tree with arrows indicating EXTRACTMAX process]

- **Time.**
 - Heap construction in $\Theta(n)$ time.
 - n EXTRACTMAX in $\Theta(n \log n)$ time.
 - \Rightarrow total time is $\Theta(n \log n)$.
Heapsort

- **Theorem.** We can sort an array in $\Theta(n \log n)$ time.
- Uses only $O(1)$ extra space.
- **In-place** sorting algorithm.
- **Equivalence** of sorting and priority queues.

Priority Queues

- Priority Queues
- Trees and Heaps
- Representations of Heaps
- Algorithms on Heaps
- Building a Heap
- Heapsort